- Описание :
Массивный многоязычный (60 языков) набор данных, полученный из расшифровок TED Talk. Каждая запись состоит из параллельных массивов языка и текста. Отсутствующие и неполные переводы будут отфильтрованы.
Домашняя страница : https://github.com/neulab/word-embeddings-for-nmt
Исходный код :
tfds.datasets.ted_multi_translate.Builder
Версии :
-
1.1.0
(по умолчанию): нет примечаний к выпуску.
-
Размер загрузки :
335.91 MiB
Размер набора данных :
752.30 MiB
.Автоматическое кэширование ( документация ): Нет
Сплиты :
Расколоть | Примеры |
---|---|
'test' | 7 213 |
'train' | 258 098 |
'validation' | 6049 |
- Структура функции :
FeaturesDict({
'talk_name': Text(shape=(), dtype=string),
'translations': TranslationVariableLanguages({
'language': Text(shape=(), dtype=string),
'translation': Text(shape=(), dtype=string),
}),
})
- Документация по функциям :
Особенность | Сорт | Форма | Dтип | Описание |
---|---|---|---|---|
ОсобенностиDict | ||||
talk_name | Текст | нить | ||
переводы | ПереводПеременнаяЯзыки | |||
переводы/язык | Текст | нить | ||
переводы/перевод | Текст | нить |
Ключи под наблюдением (см . документ
as_supervised
):None
Рисунок ( tfds.show_examples ): не поддерживается.
Примеры ( tfds.as_dataframe ):
- Цитата :
@InProceedings{qi-EtAl:2018:N18-2,
author = {Qi, Ye and Sachan, Devendra and Felix, Matthieu and Padmanabhan, Sarguna and Neubig, Graham},
title = {When and Why Are Pre-Trained Word Embeddings Useful for Neural Machine Translation?},
booktitle = {Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)},
month = {June},
year = {2018},
address = {New Orleans, Louisiana},
publisher = {Association for Computational Linguistics},
pages = {529--535},
abstract = {The performance of Neural Machine Translation (NMT) systems often suffers in low-resource scenarios where sufficiently large-scale parallel corpora cannot be obtained. Pre-trained word embeddings have proven to be invaluable for improving performance in natural language analysis tasks, which often suffer from paucity of data. However, their utility for NMT has not been extensively explored. In this work, we perform five sets of experiments that analyze when we can expect pre-trained word embeddings to help in NMT tasks. We show that such embeddings can be surprisingly effective in some cases -- providing gains of up to 20 BLEU points in the most favorable setting.},
url = {http://www.aclweb.org/anthology/N18-2084}
}
, - Описание :
Массивный многоязычный (60 языков) набор данных, полученный из расшифровок TED Talk. Каждая запись состоит из параллельных массивов языка и текста. Отсутствующие и неполные переводы будут отфильтрованы.
Домашняя страница : https://github.com/neulab/word-embeddings-for-nmt
Исходный код :
tfds.datasets.ted_multi_translate.Builder
Версии :
-
1.1.0
(по умолчанию): нет примечаний к выпуску.
-
Размер загрузки :
335.91 MiB
Размер набора данных :
752.30 MiB
.Автоматическое кэширование ( документация ): Нет
Сплиты :
Расколоть | Примеры |
---|---|
'test' | 7 213 |
'train' | 258 098 |
'validation' | 6049 |
- Структура функции :
FeaturesDict({
'talk_name': Text(shape=(), dtype=string),
'translations': TranslationVariableLanguages({
'language': Text(shape=(), dtype=string),
'translation': Text(shape=(), dtype=string),
}),
})
- Документация по функциям :
Особенность | Сорт | Форма | Dтип | Описание |
---|---|---|---|---|
ОсобенностиDict | ||||
talk_name | Текст | нить | ||
переводы | ПереводПеременнаяЯзыки | |||
переводы/язык | Текст | нить | ||
переводы/перевод | Текст | нить |
Ключи под наблюдением (см . документ
as_supervised
):None
Рисунок ( tfds.show_examples ): не поддерживается.
Примеры ( tfds.as_dataframe ):
- Цитата :
@InProceedings{qi-EtAl:2018:N18-2,
author = {Qi, Ye and Sachan, Devendra and Felix, Matthieu and Padmanabhan, Sarguna and Neubig, Graham},
title = {When and Why Are Pre-Trained Word Embeddings Useful for Neural Machine Translation?},
booktitle = {Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)},
month = {June},
year = {2018},
address = {New Orleans, Louisiana},
publisher = {Association for Computational Linguistics},
pages = {529--535},
abstract = {The performance of Neural Machine Translation (NMT) systems often suffers in low-resource scenarios where sufficiently large-scale parallel corpora cannot be obtained. Pre-trained word embeddings have proven to be invaluable for improving performance in natural language analysis tasks, which often suffer from paucity of data. However, their utility for NMT has not been extensively explored. In this work, we perform five sets of experiments that analyze when we can expect pre-trained word embeddings to help in NMT tasks. We show that such embeddings can be surprisingly effective in some cases -- providing gains of up to 20 BLEU points in the most favorable setting.},
url = {http://www.aclweb.org/anthology/N18-2084}
}