- 설명 :
TED Talk 대본에서 파생된 대규모 다국어(60개 언어) 데이터 세트. 각 레코드는 언어와 텍스트의 병렬 배열로 구성됩니다. 누락되거나 불완전한 번역은 필터링됩니다.
버전 :
-
1.1.0
(기본값): 릴리스 정보가 없습니다.
-
다운로드 크기 :
335.91 MiB
데이터 세트 크기 :
752.30 MiB
자동 캐시 ( 문서 ): 아니요
분할 :
나뉘다 | 예 |
---|---|
'test' | 7,213 |
'train' | 258,098 |
'validation' | 6,049 |
- 기능 구조 :
FeaturesDict({
'talk_name': Text(shape=(), dtype=string),
'translations': TranslationVariableLanguages({
'language': Text(shape=(), dtype=string),
'translation': Text(shape=(), dtype=string),
}),
})
- 기능 문서 :
특징 | 수업 | 모양 | D타입 | 설명 |
---|---|---|---|---|
풍모Dict | ||||
talk_name | 텍스트 | 끈 | ||
번역 | TranslationVariableLanguages | |||
번역/언어 | 텍스트 | 끈 | ||
번역/번역 | 텍스트 | 끈 |
감독된 키 (
as_supervised
문서 참조):None
그림 ( tfds.show_examples ): 지원되지 않습니다.
예 ( tfds.as_dataframe ):
- 인용 :
@InProceedings{qi-EtAl:2018:N18-2,
author = {Qi, Ye and Sachan, Devendra and Felix, Matthieu and Padmanabhan, Sarguna and Neubig, Graham},
title = {When and Why Are Pre-Trained Word Embeddings Useful for Neural Machine Translation?},
booktitle = {Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)},
month = {June},
year = {2018},
address = {New Orleans, Louisiana},
publisher = {Association for Computational Linguistics},
pages = {529--535},
abstract = {The performance of Neural Machine Translation (NMT) systems often suffers in low-resource scenarios where sufficiently large-scale parallel corpora cannot be obtained. Pre-trained word embeddings have proven to be invaluable for improving performance in natural language analysis tasks, which often suffer from paucity of data. However, their utility for NMT has not been extensively explored. In this work, we perform five sets of experiments that analyze when we can expect pre-trained word embeddings to help in NMT tasks. We show that such embeddings can be surprisingly effective in some cases -- providing gains of up to 20 BLEU points in the most favorable setting.},
url = {http://www.aclweb.org/anthology/N18-2084}
}
, - 설명 :
TED Talk 대본에서 파생된 대규모 다국어(60개 언어) 데이터 세트. 각 레코드는 언어와 텍스트의 병렬 배열로 구성됩니다. 누락되거나 불완전한 번역은 필터링됩니다.
버전 :
-
1.1.0
(기본값): 릴리스 정보가 없습니다.
-
다운로드 크기 :
335.91 MiB
데이터 세트 크기 :
752.30 MiB
자동 캐시 ( 문서 ): 아니요
분할 :
나뉘다 | 예 |
---|---|
'test' | 7,213 |
'train' | 258,098 |
'validation' | 6,049 |
- 기능 구조 :
FeaturesDict({
'talk_name': Text(shape=(), dtype=string),
'translations': TranslationVariableLanguages({
'language': Text(shape=(), dtype=string),
'translation': Text(shape=(), dtype=string),
}),
})
- 기능 문서 :
특징 | 수업 | 모양 | D타입 | 설명 |
---|---|---|---|---|
풍모Dict | ||||
talk_name | 텍스트 | 끈 | ||
번역 | TranslationVariableLanguages | |||
번역/언어 | 텍스트 | 끈 | ||
번역/번역 | 텍스트 | 끈 |
감독된 키 (
as_supervised
문서 참조):None
그림 ( tfds.show_examples ): 지원되지 않습니다.
예 ( tfds.as_dataframe ):
- 인용 :
@InProceedings{qi-EtAl:2018:N18-2,
author = {Qi, Ye and Sachan, Devendra and Felix, Matthieu and Padmanabhan, Sarguna and Neubig, Graham},
title = {When and Why Are Pre-Trained Word Embeddings Useful for Neural Machine Translation?},
booktitle = {Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)},
month = {June},
year = {2018},
address = {New Orleans, Louisiana},
publisher = {Association for Computational Linguistics},
pages = {529--535},
abstract = {The performance of Neural Machine Translation (NMT) systems often suffers in low-resource scenarios where sufficiently large-scale parallel corpora cannot be obtained. Pre-trained word embeddings have proven to be invaluable for improving performance in natural language analysis tasks, which often suffer from paucity of data. However, their utility for NMT has not been extensively explored. In this work, we perform five sets of experiments that analyze when we can expect pre-trained word embeddings to help in NMT tasks. We show that such embeddings can be surprisingly effective in some cases -- providing gains of up to 20 BLEU points in the most favorable setting.},
url = {http://www.aclweb.org/anthology/N18-2084}
}