- Descrizione :
Grande set di dati multilingue (60 lingue) derivato dalle trascrizioni di TED Talk. Ogni record è costituito da matrici parallele di lingua e testo. Le traduzioni mancanti e incomplete verranno filtrate.
Pagina iniziale : https://github.com/neulab/word-embeddings-for-nmt
Codice sorgente :
tfds.datasets.ted_multi_translate.Builder
Versioni :
-
1.1.0
(impostazione predefinita): nessuna nota di rilascio.
-
Dimensioni del download :
335.91 MiB
Dimensione del set di dati :
752.30 MiB
Cache automatica ( documentazione ): No
Divisioni :
Diviso | Esempi |
---|---|
'test' | 7.213 |
'train' | 258.098 |
'validation' | 6.049 |
- Struttura delle caratteristiche :
FeaturesDict({
'talk_name': Text(shape=(), dtype=string),
'translations': TranslationVariableLanguages({
'language': Text(shape=(), dtype=string),
'translation': Text(shape=(), dtype=string),
}),
})
- Documentazione delle funzionalità :
Caratteristica | Classe | Forma | Tipo D | Descrizione |
---|---|---|---|---|
CaratteristicheDict | ||||
talk_name | Testo | corda | ||
traduzioni | TranslationVariableLanguages | |||
traduzioni/lingua | Testo | corda | ||
traduzioni/traduzione | Testo | corda |
Chiavi supervisionate (Vedi
as_supervised
doc ):None
Figura ( tfds.show_examples ): non supportato.
Esempi ( tfds.as_dataframe ):
- Citazione :
@InProceedings{qi-EtAl:2018:N18-2,
author = {Qi, Ye and Sachan, Devendra and Felix, Matthieu and Padmanabhan, Sarguna and Neubig, Graham},
title = {When and Why Are Pre-Trained Word Embeddings Useful for Neural Machine Translation?},
booktitle = {Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)},
month = {June},
year = {2018},
address = {New Orleans, Louisiana},
publisher = {Association for Computational Linguistics},
pages = {529--535},
abstract = {The performance of Neural Machine Translation (NMT) systems often suffers in low-resource scenarios where sufficiently large-scale parallel corpora cannot be obtained. Pre-trained word embeddings have proven to be invaluable for improving performance in natural language analysis tasks, which often suffer from paucity of data. However, their utility for NMT has not been extensively explored. In this work, we perform five sets of experiments that analyze when we can expect pre-trained word embeddings to help in NMT tasks. We show that such embeddings can be surprisingly effective in some cases -- providing gains of up to 20 BLEU points in the most favorable setting.},
url = {http://www.aclweb.org/anthology/N18-2084}
}
, - Descrizione :
Grande set di dati multilingue (60 lingue) derivato dalle trascrizioni di TED Talk. Ogni record è costituito da matrici parallele di lingua e testo. Le traduzioni mancanti e incomplete verranno filtrate.
Pagina iniziale : https://github.com/neulab/word-embeddings-for-nmt
Codice sorgente :
tfds.datasets.ted_multi_translate.Builder
Versioni :
-
1.1.0
(impostazione predefinita): nessuna nota di rilascio.
-
Dimensioni del download :
335.91 MiB
Dimensione del set di dati :
752.30 MiB
Cache automatica ( documentazione ): No
Divisioni :
Diviso | Esempi |
---|---|
'test' | 7.213 |
'train' | 258.098 |
'validation' | 6.049 |
- Struttura delle caratteristiche :
FeaturesDict({
'talk_name': Text(shape=(), dtype=string),
'translations': TranslationVariableLanguages({
'language': Text(shape=(), dtype=string),
'translation': Text(shape=(), dtype=string),
}),
})
- Documentazione delle funzionalità :
Caratteristica | Classe | Forma | Tipo D | Descrizione |
---|---|---|---|---|
CaratteristicheDict | ||||
talk_name | Testo | corda | ||
traduzioni | TranslationVariableLanguages | |||
traduzioni/lingua | Testo | corda | ||
traduzioni/traduzione | Testo | corda |
Chiavi supervisionate (Vedi
as_supervised
doc ):None
Figura ( tfds.show_examples ): non supportato.
Esempi ( tfds.as_dataframe ):
- Citazione :
@InProceedings{qi-EtAl:2018:N18-2,
author = {Qi, Ye and Sachan, Devendra and Felix, Matthieu and Padmanabhan, Sarguna and Neubig, Graham},
title = {When and Why Are Pre-Trained Word Embeddings Useful for Neural Machine Translation?},
booktitle = {Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)},
month = {June},
year = {2018},
address = {New Orleans, Louisiana},
publisher = {Association for Computational Linguistics},
pages = {529--535},
abstract = {The performance of Neural Machine Translation (NMT) systems often suffers in low-resource scenarios where sufficiently large-scale parallel corpora cannot be obtained. Pre-trained word embeddings have proven to be invaluable for improving performance in natural language analysis tasks, which often suffer from paucity of data. However, their utility for NMT has not been extensively explored. In this work, we perform five sets of experiments that analyze when we can expect pre-trained word embeddings to help in NMT tasks. We show that such embeddings can be surprisingly effective in some cases -- providing gains of up to 20 BLEU points in the most favorable setting.},
url = {http://www.aclweb.org/anthology/N18-2084}
}