- Descrição :
Tarefas de mesa de horizonte curto xArm
Página inicial : https://rot-robot.github.io/
Código fonte :
tfds.robotics.rtx.NyuRotDatasetConvertedExternallyToRlds
Versões :
-
0.1.0
(padrão): versão inicial.
-
Tamanho do download :
Unknown size
Tamanho do conjunto de dados :
5.33 MiB
Armazenado em cache automaticamente ( documentação ): Sim
Divisões :
Dividir | Exemplos |
---|---|
'train' | 14 |
- Estrutura de recursos :
FeaturesDict({
'episode_metadata': FeaturesDict({
'file_path': Text(shape=(), dtype=string),
}),
'steps': Dataset({
'action': Tensor(shape=(7,), dtype=float32, description=Robot action, consists of [3x robot end effector delta positions, 3x robot end effector rotations (roll, pitch, yaw),1x gripper open/close (0-open, 1-closed)].),
'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
'language_instruction': Text(shape=(), dtype=string),
'observation': FeaturesDict({
'image': Image(shape=(84, 84, 3), dtype=uint8, description=Main camera RGB observation.),
'state': Tensor(shape=(7,), dtype=float32, description=Robot state, consists of [3x robot end effector positions, 3x robot end effector rotations (roll, pitch, yaw),1x gripper open/close (0-open, 1-closed)].),
}),
'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
}),
})
- Documentação de recursos :
Recurso | Aula | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
episódio_metadados | RecursosDict | |||
episódio_metadados/caminho_do_arquivo | Texto | corda | Caminho para o arquivo de dados original. | |
passos | Conjunto de dados | |||
etapas/ação | Tensor | (7,) | float32 | A ação do robô consiste em [3x posições delta do efetor final do robô, 3x rotações do efetor final do robô (rolamento, inclinação, guinada), 1x abertura/fechamento da garra (0-aberto, 1-fechado)]. |
passos/desconto | Escalar | float32 | Desconto, se fornecido, o padrão é 1. | |
passos/é_primeiro | Tensor | bool | ||
passos/é_último | Tensor | bool | ||
etapas/is_terminal | Tensor | bool | ||
etapas/idioma_incorporação | Tensor | (512,) | float32 | Incorporação da linguagem Kona. Consulte https://tfhub.dev/google/universal-sentence-encoder-large/5 |
etapas/instrução_idioma | Texto | corda | Instrução de Idiomas. | |
passos/observação | RecursosDict | |||
passos/observação/imagem | Imagem | (84, 84, 3) | uint8 | Observação RGB da câmera principal. |
etapas/observação/estado | Tensor | (7,) | float32 | O estado do robô consiste em [3x posições do efetor final do robô, 3x rotações do efetor final do robô (rolamento, inclinação, guinada), 1x abertura/fechamento da garra (0-aberto, 1-fechado)]. |
passos/recompensa | Escalar | float32 | Recompensa, se fornecida, 1 na etapa final para demonstrações. |
Chaves supervisionadas (consulte o documento
as_supervised
):None
Figura ( tfds.show_examples ): Não suportado.
Exemplos ( tfds.as_dataframe ):
- Citação :
@inproceedings{haldar2023watch,
title={Watch and match: Supercharging imitation with regularized optimal transport},
author={Haldar, Siddhant and Mathur, Vaibhav and Yarats, Denis and Pinto, Lerrel},
booktitle={Conference on Robot Learning},
pages={32--43},
year={2023},
organization={PMLR}
}