- বর্ণনা :
xArm ছোট-দিগন্তের টেবিল-টপ টাস্ক
হোমপেজ : https://rot-robot.github.io/
উত্স কোড :
tfds.robotics.rtx.NyuRotDatasetConvertedExternallyToRlds
সংস্করণ :
-
0.1.0
(ডিফল্ট): প্রাথমিক প্রকাশ।
-
ডাউনলোড আকার :
Unknown size
ডেটাসেটের আকার :
5.33 MiB
স্বয়ংক্রিয় ক্যাশে ( ডকুমেন্টেশন ): হ্যাঁ
বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'train' | 14 |
- বৈশিষ্ট্য গঠন :
FeaturesDict({
'episode_metadata': FeaturesDict({
'file_path': Text(shape=(), dtype=string),
}),
'steps': Dataset({
'action': Tensor(shape=(7,), dtype=float32, description=Robot action, consists of [3x robot end effector delta positions, 3x robot end effector rotations (roll, pitch, yaw),1x gripper open/close (0-open, 1-closed)].),
'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
'language_instruction': Text(shape=(), dtype=string),
'observation': FeaturesDict({
'image': Image(shape=(84, 84, 3), dtype=uint8, description=Main camera RGB observation.),
'state': Tensor(shape=(7,), dtype=float32, description=Robot state, consists of [3x robot end effector positions, 3x robot end effector rotations (roll, pitch, yaw),1x gripper open/close (0-open, 1-closed)].),
}),
'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
}),
})
- বৈশিষ্ট্য ডকুমেন্টেশন :
বৈশিষ্ট্য | ক্লাস | আকৃতি | ডিটাইপ | বর্ণনা |
---|---|---|---|---|
ফিচারসডিক্ট | ||||
episode_metadata | ফিচারসডিক্ট | |||
episode_metadata/file_path | পাঠ্য | স্ট্রিং | মূল ডেটা ফাইলের পথ। | |
পদক্ষেপ | ডেটাসেট | |||
পদক্ষেপ/ক্রিয়া | টেনসর | (৭,) | float32 | রোবট অ্যাকশনের মধ্যে রয়েছে [3x রোবট এন্ড ইফেক্টর ডেল্টা পজিশন, 3x রোবট এন্ড ইফেক্টর রোটেশন (রোল, পিচ, ইয়াও), 1x গ্রিপার ওপেন/ক্লোজ (0-ওপেন, 1-ক্লোজড)]। |
পদক্ষেপ/ছাড় | স্কেলার | float32 | ডিসকাউন্ট দেওয়া হলে, ডিফল্ট 1. | |
steps/is_first | টেনসর | bool | ||
ধাপ/শেষ_শেষ | টেনসর | bool | ||
steps/is_terminal | টেনসর | bool | ||
পদক্ষেপ/ভাষা_এম্বেডিং | টেনসর | (512,) | float32 | কোন ভাষা এম্বেডিং. https://tfhub.dev/google/universal-sentence-encoder-large/5 দেখুন |
পদক্ষেপ/ভাষা_নির্দেশ | পাঠ্য | স্ট্রিং | ভাষার নির্দেশনা। | |
পদক্ষেপ/পর্যবেক্ষণ | ফিচারসডিক্ট | |||
পদক্ষেপ/পর্যবেক্ষণ/চিত্র | ছবি | (৮৪, ৮৪, ৩) | uint8 | প্রধান ক্যামেরা আরজিবি পর্যবেক্ষণ। |
পদক্ষেপ/পর্যবেক্ষণ/রাষ্ট্র | টেনসর | (৭,) | float32 | রোবট স্টেট, [3x রোবট এন্ড ইফেক্টর পজিশন, 3x রোবট এন্ড ইফেক্টর রোটেশন (রোল, পিচ, ইয়াও), 1x গ্রিপার ওপেন/ক্লোজ (0-ওপেন, 1-ক্লোজড)] নিয়ে গঠিত। |
পদক্ষেপ/পুরস্কার | স্কেলার | float32 | প্রদান করা হলে পুরস্কার, ডেমোর জন্য চূড়ান্ত ধাপে 1। |
তত্ত্বাবধান করা কী (দেখুন
as_supervised
doc ):None
চিত্র ( tfds.show_examples ): সমর্থিত নয়।
উদাহরণ ( tfds.as_dataframe ):
- উদ্ধৃতি :
@inproceedings{haldar2023watch,
title={Watch and match: Supercharging imitation with regularized optimal transport},
author={Haldar, Siddhant and Mathur, Vaibhav and Yarats, Denis and Pinto, Lerrel},
booktitle={Conference on Robot Learning},
pages={32--43},
year={2023},
organization={PMLR}
}