- Deskripsi :
Tugas Bersama MRQA 2019 berfokus pada generalisasi dalam menjawab pertanyaan. Sistem penjawab pertanyaan yang efektif harus melakukan lebih dari sekadar menginterpolasi dari set pelatihan untuk menjawab contoh uji yang diambil dari distribusi yang sama: ia juga harus dapat mengekstrapolasi ke contoh di luar distribusi — tantangan yang jauh lebih sulit.
MRQA mengadaptasi dan menyatukan beberapa set data penjawab pertanyaan yang berbeda (subset yang dipilih dengan cermat dari set data yang ada) ke dalam format yang sama (format SQuAD). Diantaranya, enam set data tersedia untuk pelatihan, dan enam set data tersedia untuk pengujian. Sebagian kecil dari kumpulan data pelatihan disimpan sebagai data dalam domain yang dapat digunakan untuk pengembangan. Kumpulan data pengujian hanya berisi data di luar domain. Patokan ini dirilis sebagai bagian dari Tugas Bersama MRQA 2019.
Informasi lebih lanjut dapat ditemukan di: <a href="https://mrqa.github.io/2019/shared.html">https://mrqa.github.io/2019/shared.html</a>
.
Dokumentasi Tambahan : Jelajahi di Makalah Dengan Kode
Beranda : https://mrqa.github.io/2019/shared.html
Kode sumber :
tfds.text.mrqa.MRQA
Versi :
-
1.0.0
(default): Rilis awal.
-
Struktur fitur :
FeaturesDict({
'answers': Sequence(string),
'context': string,
'context_tokens': Sequence({
'offsets': int32,
'tokens': string,
}),
'detected_answers': Sequence({
'char_spans': Sequence({
'end': int32,
'start': int32,
}),
'text': string,
'token_spans': Sequence({
'end': int32,
'start': int32,
}),
}),
'qid': string,
'question': string,
'question_tokens': Sequence({
'offsets': int32,
'tokens': string,
}),
'subset': string,
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
jawaban | Urutan (Tensor) | (Tidak ada,) | rangkaian | |
konteks | Tensor | rangkaian | ||
konteks_token | Urutan | |||
konteks_token/offset | Tensor | int32 | ||
konteks_token/token | Tensor | rangkaian | ||
terdeteksi_jawaban | Urutan | |||
terdeteksi_answers/char_spans | Urutan | |||
detect_answers/char_spans/end | Tensor | int32 | ||
detect_answers/char_spans/start | Tensor | int32 | ||
terdeteksi_jawaban/teks | Tensor | rangkaian | ||
terdeteksi_answers/token_spans | Urutan | |||
detect_answers/token_spans/end | Tensor | int32 | ||
detect_answers/token_spans/start | Tensor | int32 | ||
qid | Tensor | rangkaian | ||
pertanyaan | Tensor | rangkaian | ||
question_token | Urutan | |||
question_token/offset | Tensor | int32 | ||
token_pertanyaan/token | Tensor | rangkaian | ||
bagian | Tensor | rangkaian |
Kunci yang diawasi (Lihat
as_supervised
doc ):None
Gambar ( tfds.show_examples ): Tidak didukung.
mrqa/squad (konfigurasi default)
Deskripsi konfigurasi : Dataset SQuAD (Stanford Question Answering Dataset) digunakan sebagai dasar untuk format tugas bersama. Crowdworker diperlihatkan paragraf dari Wikipedia dan diminta untuk menulis pertanyaan dengan jawaban ekstraktif.
Ukuran unduhan :
29.66 MiB
Ukuran dataset :
271.43 MiB
Di-cache otomatis ( dokumentasi ): Tidak
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 86.588 |
'validation' | 10.507 |
- Contoh ( tfds.as_dataframe ):
- Kutipan :
@inproceedings{rajpurkar-etal-2016-squad,
title = "{SQ}u{AD}: 100,000+ Questions for Machine Comprehension of Text",
author = "Rajpurkar, Pranav and
Zhang, Jian and
Lopyrev, Konstantin and
Liang, Percy",
booktitle = "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2016",
address = "Austin, Texas",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D16-1264",
doi = "10.18653/v1/D16-1264",
pages = "2383--2392",
}
@inproceedings{fisch-etal-2019-mrqa,
title = "{MRQA} 2019 Shared Task: Evaluating Generalization in Reading Comprehension",
author = "Fisch, Adam and
Talmor, Alon and
Jia, Robin and
Seo, Minjoon and
Choi, Eunsol and
Chen, Danqi",
booktitle = "Proceedings of the 2nd Workshop on Machine Reading for Question Answering",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5801",
doi = "10.18653/v1/D19-5801",
pages = "1--13",
}
Note that each MRQA dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
mrqa/news_qa
Deskripsi konfigurasi : Dua kelompok crowdworker bertanya dan menjawab pertanyaan berdasarkan artikel berita CNN. "Penanya" hanya melihat judul dan ringkasan artikel sementara "penjawab" melihat artikel lengkap. Pertanyaan yang tidak memiliki jawaban atau ditandai dalam kumpulan data tanpa persetujuan annotator akan dibuang.
Ukuran unduhan :
56.83 MiB
Ukuran dataset :
654.25 MiB
Di-cache otomatis ( dokumentasi ): Tidak
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 74.160 |
'validation' | 4.212 |
- Contoh ( tfds.as_dataframe ):
- Kutipan :
@inproceedings{trischler-etal-2017-newsqa,
title = "{N}ews{QA}: A Machine Comprehension Dataset",
author = "Trischler, Adam and
Wang, Tong and
Yuan, Xingdi and
Harris, Justin and
Sordoni, Alessandro and
Bachman, Philip and
Suleman, Kaheer",
booktitle = "Proceedings of the 2nd Workshop on Representation Learning for {NLP}",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-2623",
doi = "10.18653/v1/W17-2623",
pages = "191--200",
}
#
@inproceedings{fisch-etal-2019-mrqa,
title = "{MRQA} 2019 Shared Task: Evaluating Generalization in Reading Comprehension",
author = "Fisch, Adam and
Talmor, Alon and
Jia, Robin and
Seo, Minjoon and
Choi, Eunsol and
Chen, Danqi",
booktitle = "Proceedings of the 2nd Workshop on Machine Reading for Question Answering",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5801",
doi = "10.18653/v1/D19-5801",
pages = "1--13",
}
Note that each MRQA dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
mrqa/trivia_qa
Deskripsi konfigurasi : Pasangan pertanyaan dan jawaban bersumber dari situs trivia dan liga kuis. Versi web TriviaQA, di mana konteks diambil dari hasil permintaan pencarian Bing, digunakan.
Ukuran unduhan :
383.14 MiB
Ukuran dataset :
772.75 MiB
Di-cache otomatis ( dokumentasi ): Tidak
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 61.688 |
'validation' | 7.785 |
- Contoh ( tfds.as_dataframe ):
- Kutipan :
@inproceedings{joshi-etal-2017-triviaqa,
title = "{T}rivia{QA}: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension",
author = "Joshi, Mandar and
Choi, Eunsol and
Weld, Daniel and
Zettlemoyer, Luke",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-1147",
doi = "10.18653/v1/P17-1147",
pages = "1601--1611",
}
@inproceedings{fisch-etal-2019-mrqa,
title = "{MRQA} 2019 Shared Task: Evaluating Generalization in Reading Comprehension",
author = "Fisch, Adam and
Talmor, Alon and
Jia, Robin and
Seo, Minjoon and
Choi, Eunsol and
Chen, Danqi",
booktitle = "Proceedings of the 2nd Workshop on Machine Reading for Question Answering",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5801",
doi = "10.18653/v1/D19-5801",
pages = "1--13",
}
Note that each MRQA dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
mrqa/search_qa
Deskripsi konfigurasi : Pasangan pertanyaan dan jawaban bersumber dari Jeopardy! acara TV. Konteks terdiri dari cuplikan yang diambil dari kueri penelusuran Google.
Ukuran unduhan :
699.86 MiB
Ukuran dataset :
1.38 GiB
Di-cache otomatis ( dokumentasi ): Tidak
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 117.384 |
'validation' | 16.980 |
- Contoh ( tfds.as_dataframe ):
- Kutipan :
@article{dunn2017searchqa,
title={Searchqa: A new q\&a dataset augmented with context from a search engine},
author={Dunn, Matthew and Sagun, Levent and Higgins, Mike and Guney, V Ugur and Cirik, Volkan and Cho, Kyunghyun},
journal={arXiv preprint arXiv:1704.05179},
year={2017}
}
@inproceedings{fisch-etal-2019-mrqa,
title = "{MRQA} 2019 Shared Task: Evaluating Generalization in Reading Comprehension",
author = "Fisch, Adam and
Talmor, Alon and
Jia, Robin and
Seo, Minjoon and
Choi, Eunsol and
Chen, Danqi",
booktitle = "Proceedings of the 2nd Workshop on Machine Reading for Question Answering",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5801",
doi = "10.18653/v1/D19-5801",
pages = "1--13",
}
Note that each MRQA dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
mrqa/hotpot_qa
Deskripsi konfigurasi : Crowdworkers diperlihatkan dua paragraf yang terhubung dengan entitas dari Wikipedia dan diminta untuk menulis dan menjawab pertanyaan yang membutuhkan penalaran multi-hop untuk dipecahkan. Dalam latar aslinya, paragraf ini dicampur dengan paragraf pengalih perhatian tambahan untuk mempersulit penyimpulan. Di sini, paragraf distraktor tidak disertakan.
Ukuran unduhan :
111.98 MiB
Ukuran dataset :
272.87 MiB
Di-cache otomatis ( dokumentasi ): Tidak
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 72.928 |
'validation' | 5.901 |
- Contoh ( tfds.as_dataframe ):
- Kutipan :
@inproceedings{yang-etal-2018-hotpotqa,
title = "{H}otpot{QA}: A Dataset for Diverse, Explainable Multi-hop Question Answering",
author = "Yang, Zhilin and
Qi, Peng and
Zhang, Saizheng and
Bengio, Yoshua and
Cohen, William and
Salakhutdinov, Ruslan and
Manning, Christopher D.",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1259",
doi = "10.18653/v1/D18-1259",
pages = "2369--2380",
}
@inproceedings{fisch-etal-2019-mrqa,
title = "{MRQA} 2019 Shared Task: Evaluating Generalization in Reading Comprehension",
author = "Fisch, Adam and
Talmor, Alon and
Jia, Robin and
Seo, Minjoon and
Choi, Eunsol and
Chen, Danqi",
booktitle = "Proceedings of the 2nd Workshop on Machine Reading for Question Answering",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5801",
doi = "10.18653/v1/D19-5801",
pages = "1--13",
}
Note that each MRQA dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
mrqa/natural_questions
Deskripsi konfigurasi : Pertanyaan dikumpulkan dari kueri pencarian informasi ke mesin pencari Google oleh pengguna nyata dalam kondisi alami. Jawaban atas pertanyaan dijelaskan di halaman Wikipedia yang diambil oleh crowdworker. Dua jenis anotasi dikumpulkan: 1) kotak pembatas HTML yang berisi informasi yang cukup untuk sepenuhnya menyimpulkan jawaban atas pertanyaan (Jawaban Panjang), dan 2) subspan atau sub-rentang dalam kotak pembatas yang terdiri dari jawaban sebenarnya (Jawaban Singkat ). Hanya contoh yang memiliki jawaban singkat yang digunakan, dan jawaban panjang digunakan sebagai konteksnya.
Ukuran unduhan :
121.15 MiB
Ukuran dataset :
339.03 MiB
Di-cache otomatis ( dokumentasi ): Tidak
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 104.071 |
'validation' | 12.836 |
- Contoh ( tfds.as_dataframe ):
- Kutipan :
@article{kwiatkowski-etal-2019-natural,
title = "Natural Questions: A Benchmark for Question Answering Research",
author = "Kwiatkowski, Tom and
Palomaki, Jennimaria and
Redfield, Olivia and
Collins, Michael and
Parikh, Ankur and
Alberti, Chris and
Epstein, Danielle and
Polosukhin, Illia and
Devlin, Jacob and
Lee, Kenton and
Toutanova, Kristina and
Jones, Llion and
Kelcey, Matthew and
Chang, Ming-Wei and
Dai, Andrew M. and
Uszkoreit, Jakob and
Le, Quoc and
Petrov, Slav",
journal = "Transactions of the Association for Computational Linguistics",
volume = "7",
year = "2019",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q19-1026",
doi = "10.1162/tacl_a_00276",
pages = "452--466",
}
@inproceedings{fisch-etal-2019-mrqa,
title = "{MRQA} 2019 Shared Task: Evaluating Generalization in Reading Comprehension",
author = "Fisch, Adam and
Talmor, Alon and
Jia, Robin and
Seo, Minjoon and
Choi, Eunsol and
Chen, Danqi",
booktitle = "Proceedings of the 2nd Workshop on Machine Reading for Question Answering",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5801",
doi = "10.18653/v1/D19-5801",
pages = "1--13",
}
Note that each MRQA dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
mrqa/bio_asq
Deskripsi konfigurasi : BioASQ, sebuah tantangan pada pengindeksan semantik biomedis skala besar dan menjawab pertanyaan, berisi pasangan pertanyaan dan jawaban yang dibuat oleh pakar domain. Mereka kemudian ditautkan secara manual ke beberapa artikel sains terkait (PubMed). Abstrak lengkap dari setiap artikel yang ditautkan diunduh dan digunakan sebagai konteks individu (misalnya, satu pertanyaan dapat ditautkan ke beberapa artikel independen untuk membuat beberapa pasangan konteks QA). Abstrak yang tidak tepat berisi jawabannya akan dibuang.
Ukuran unduhan :
2.54 MiB
Ukuran dataset :
6.70 MiB
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'test' | 1.504 |
- Contoh ( tfds.as_dataframe ):
- Kutipan :
@article{tsatsaronis2015overview,
title={An overview of the BIOASQ large-scale biomedical semantic indexing and question answering competition},
author={Tsatsaronis, George and Balikas, Georgios and Malakasiotis, Prodromos and Partalas, Ioannis and Zschunke, Matthias and Alvers, Michael R and Weissenborn, Dirk and Krithara, Anastasia and Petridis, Sergios and Polychronopoulos, Dimitris and others},
journal={BMC bioinformatics},
volume={16},
number={1},
pages={1--28},
year={2015},
publisher={Springer}
}
@inproceedings{fisch-etal-2019-mrqa,
title = "{MRQA} 2019 Shared Task: Evaluating Generalization in Reading Comprehension",
author = "Fisch, Adam and
Talmor, Alon and
Jia, Robin and
Seo, Minjoon and
Choi, Eunsol and
Chen, Danqi",
booktitle = "Proceedings of the 2nd Workshop on Machine Reading for Question Answering",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5801",
doi = "10.18653/v1/D19-5801",
pages = "1--13",
}
Note that each MRQA dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
mrqa/jatuhkan
Deskripsi konfigurasi : Contoh DROP (Discrete Reasoning Over the content of Paragraphs) dikumpulkan mirip dengan SQuAD, di mana crowdworker diminta untuk membuat pasangan pertanyaan-jawaban dari paragraf Wikipedia. Pertanyaan berfokus pada penalaran kuantitatif, dan kumpulan data asli berisi jawaban numerik non-ekstraktif serta jawaban teks ekstraktif. Himpunan soal yang digunakan bersifat ekstraktif.
Ukuran unduhan :
578.25 KiB
Ukuran dataset :
5.41 MiB
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'test' | 1.503 |
- Contoh ( tfds.as_dataframe ):
- Kutipan :
@inproceedings{dua-etal-2019-drop,
title = "{DROP}: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs",
author = "Dua, Dheeru and
Wang, Yizhong and
Dasigi, Pradeep and
Stanovsky, Gabriel and
Singh, Sameer and
Gardner, Matt",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1246",
doi = "10.18653/v1/N19-1246",
pages = "2368--2378",
}
@inproceedings{fisch-etal-2019-mrqa,
title = "{MRQA} 2019 Shared Task: Evaluating Generalization in Reading Comprehension",
author = "Fisch, Adam and
Talmor, Alon and
Jia, Robin and
Seo, Minjoon and
Choi, Eunsol and
Chen, Danqi",
booktitle = "Proceedings of the 2nd Workshop on Machine Reading for Question Answering",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5801",
doi = "10.18653/v1/D19-5801",
pages = "1--13",
}
Note that each MRQA dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
mrqa/duo_rc
Deskripsi konfigurasi : Digunakan pemisahan ParaphraseRC dari dataset DuoRC. Dalam latar ini, dua ringkasan plot berbeda dari film yang sama dikumpulkan—satu dari Wikipedia dan lainnya dari IMDb. Dua kelompok crowdworker yang berbeda bertanya dan menjawab pertanyaan tentang plot film, di mana "penanya" hanya ditampilkan di halaman Wikipedia, dan "penjawab" hanya ditampilkan di halaman IMDb. Pertanyaan yang ditandai sebagai tidak dapat dijawab akan dibuang.
Ukuran unduhan :
1.14 MiB
Ukuran dataset :
15.04 MiB
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'test' | 1.501 |
- Contoh ( tfds.as_dataframe ):
- Kutipan :
@inproceedings{saha-etal-2018-duorc,
title = "{D}uo{RC}: Towards Complex Language Understanding with Paraphrased Reading Comprehension",
author = "Saha, Amrita and
Aralikatte, Rahul and
Khapra, Mitesh M. and
Sankaranarayanan, Karthik",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-1156",
doi = "10.18653/v1/P18-1156",
pages = "1683--1693",
}
@inproceedings{fisch-etal-2019-mrqa,
title = "{MRQA} 2019 Shared Task: Evaluating Generalization in Reading Comprehension",
author = "Fisch, Adam and
Talmor, Alon and
Jia, Robin and
Seo, Minjoon and
Choi, Eunsol and
Chen, Danqi",
booktitle = "Proceedings of the 2nd Workshop on Machine Reading for Question Answering",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5801",
doi = "10.18653/v1/D19-5801",
pages = "1--13",
}
Note that each MRQA dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
mrqa/ras
Deskripsi konfigurasi : Kumpulan Data Pemahaman Membaca Dari Ujian (RACE) dikumpulkan dari ujian pemahaman bacaan bahasa Inggris untuk siswa sekolah menengah dan atas Cina. Perpecahan sekolah menengah (yang lebih menantang) digunakan dan juga pertanyaan gaya "isi yang kosong" implisit (yang tidak wajar untuk tugas ini) disaring.
Ukuran unduhan :
1.49 MiB
Ukuran dataset :
3.53 MiB
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'test' | 674 |
- Contoh ( tfds.as_dataframe ):
- Kutipan :
@inproceedings{lai-etal-2017-race,
title = "{RACE}: Large-scale {R}e{A}ding Comprehension Dataset From Examinations",
author = "Lai, Guokun and
Xie, Qizhe and
Liu, Hanxiao and
Yang, Yiming and
Hovy, Eduard",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1082",
doi = "10.18653/v1/D17-1082",
pages = "785--794",
}
@inproceedings{fisch-etal-2019-mrqa,
title = "{MRQA} 2019 Shared Task: Evaluating Generalization in Reading Comprehension",
author = "Fisch, Adam and
Talmor, Alon and
Jia, Robin and
Seo, Minjoon and
Choi, Eunsol and
Chen, Danqi",
booktitle = "Proceedings of the 2nd Workshop on Machine Reading for Question Answering",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5801",
doi = "10.18653/v1/D19-5801",
pages = "1--13",
}
Note that each MRQA dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
mrqa/relation_extraction
Deskripsi konfigurasi : Diberikan kumpulan data yang mengisi slot, hubungan antar entitas diubah secara sistematis menjadi pasangan pertanyaan-jawaban menggunakan templat. Misalnya, hubungan terdidik_at(x, y) antara dua entitas x dan y yang muncul dalam sebuah kalimat dapat dinyatakan sebagai “Di mana x berpendidikan?” dengan jawaban y. Beberapa template untuk setiap jenis relasi dikumpulkan. Pemisahan tolok ukur zeroshot dataset (generalisasi ke hubungan yang tidak terlihat) digunakan, dan hanya contoh positif yang disimpan.
Ukuran unduhan :
830.88 KiB
Ukuran dataset :
3.71 MiB
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'test' | 2.948 |
- Contoh ( tfds.as_dataframe ):
- Kutipan :
@inproceedings{levy-etal-2017-zero,
title = "Zero-Shot Relation Extraction via Reading Comprehension",
author = "Levy, Omer and
Seo, Minjoon and
Choi, Eunsol and
Zettlemoyer, Luke",
booktitle = "Proceedings of the 21st Conference on Computational Natural Language Learning ({C}o{NLL} 2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/K17-1034",
doi = "10.18653/v1/K17-1034",
pages = "333--342",
}
@inproceedings{fisch-etal-2019-mrqa,
title = "{MRQA} 2019 Shared Task: Evaluating Generalization in Reading Comprehension",
author = "Fisch, Adam and
Talmor, Alon and
Jia, Robin and
Seo, Minjoon and
Choi, Eunsol and
Chen, Danqi",
booktitle = "Proceedings of the 2nd Workshop on Machine Reading for Question Answering",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5801",
doi = "10.18653/v1/D19-5801",
pages = "1--13",
}
Note that each MRQA dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
mrqa/textbook_qa
Deskripsi Config : TextbookQA dikumpulkan dari pelajaran dari buku teks Life Science, Earth Science, dan Physical Science sekolah menengah. Pertanyaan yang disertai diagram, atau pertanyaan “Benar atau Salah” tidak disertakan.
Ukuran unduhan :
1.79 MiB
Ukuran dataset :
14.04 MiB
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'test' | 1.503 |
- Contoh ( tfds.as_dataframe ):
- Kutipan :
@inproceedings{kembhavi2017you,
title={Are you smarter than a sixth grader? textbook question answering for multimodal machine comprehension},
author={Kembhavi, Aniruddha and Seo, Minjoon and Schwenk, Dustin and Choi, Jonghyun and Farhadi, Ali and Hajishirzi, Hannaneh},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern recognition},
pages={4999--5007},
year={2017}
}
@inproceedings{fisch-etal-2019-mrqa,
title = "{MRQA} 2019 Shared Task: Evaluating Generalization in Reading Comprehension",
author = "Fisch, Adam and
Talmor, Alon and
Jia, Robin and
Seo, Minjoon and
Choi, Eunsol and
Chen, Danqi",
booktitle = "Proceedings of the 2nd Workshop on Machine Reading for Question Answering",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5801",
doi = "10.18653/v1/D19-5801",
pages = "1--13",
}
Note that each MRQA dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."