- Descripción :
GEM es un entorno de referencia para la generación de lenguaje natural con un enfoque en su evaluación, tanto a través de anotaciones humanas como de métricas automatizadas.
GEM tiene como objetivo: (1) medir el progreso de NLG en 13 conjuntos de datos que abarcan muchas tareas e idiomas de NLG. (2) proporcionar un análisis en profundidad de los datos y modelos presentados a través de declaraciones de datos y conjuntos de desafíos. (3) desarrollar estándares para la evaluación del texto generado usando métricas tanto automatizadas como humanas.
Se puede encontrar más información en https://gem-benchmark.com .
Documentación adicional : Explore en Papers With Code
Página de inicio: https://gem-benchmark.com
Código fuente :
tfds.text.gem.Gem
Versiones :
-
1.0.0
: Versión inicial -
1.0.1
: Actualizar filtro de enlaces malos para MLSum -
1.1.0
(predeterminado): Lanzamiento de los conjuntos de desafío
-
Claves supervisadas (Ver
as_supervised
doc ):None
Figura ( tfds.show_examples ): no compatible.
gem/common_gen (configuración predeterminada)
Descripción de la configuración : CommonGen es una tarea de generación de texto restringida, asociada con un conjunto de datos de referencia, para probar explícitamente las máquinas en cuanto a la capacidad de razonamiento generativo de sentido común. Dado un conjunto de conceptos comunes; la tarea es generar una oración coherente que describa un escenario cotidiano usando estos conceptos.
Tamaño de descarga :
1.84 MiB
Tamaño del conjunto de datos :
16.84 MiB
Almacenamiento automático en caché ( documentación ): Sí
Divisiones :
Separar | Ejemplos |
---|---|
'challenge_test_scramble' | 500 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test' | 1,497 |
'train' | 67,389 |
'validation' | 993 |
- Estructura de características :
FeaturesDict({
'concept_set_id': int32,
'concepts': Sequence(string),
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'target': string,
})
- Documentación de características :
Rasgo | Clase | Forma | Tipo D | Descripción |
---|---|---|---|---|
CaracterísticasDict | ||||
concepto_conjunto_id | Tensor | int32 | ||
conceptos | Secuencia (tensor) | (Ninguna,) | cuerda | |
gem_id | Tensor | cuerda | ||
gem_parent_id | Tensor | cuerda | ||
referencias | Secuencia (tensor) | (Ninguna,) | cuerda | |
objetivo | Tensor | cuerda |
- Ejemplos ( tfds.as_dataframe ):
- Cita :
@inproceedings{lin2020commongen,
title = "CommonGen: A Constrained Text Generation Challenge for Generative Commonsense Reasoning",
author = "Lin, Bill Yuchen and
Zhou, Wangchunshu and
Shen, Ming and
Zhou, Pei and
Bhagavatula, Chandra and
Choi, Yejin and
Ren, Xiang",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.findings-emnlp.165",
pages = "1823--1840",
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gema/cs_restaurantes
Descripción de la configuración : la tarea es generar respuestas en el contexto de un sistema de diálogo (hipotético) que proporciona información sobre restaurantes. La entrada es un tipo de acto de intención/diálogo básico y una lista de espacios (atributos) y sus valores. El resultado es una oración en lenguaje natural.
Tamaño de descarga :
1.46 MiB
Tamaño del conjunto de datos :
2.71 MiB
Almacenamiento automático en caché ( documentación ): Sí
Divisiones :
Separar | Ejemplos |
---|---|
'challenge_test_scramble' | 500 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test' | 842 |
'train' | 3,569 |
'validation' | 781 |
- Estructura de características :
FeaturesDict({
'dialog_act': string,
'dialog_act_delexicalized': string,
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'target': string,
'target_delexicalized': string,
})
- Documentación de características :
Rasgo | Clase | Forma | Tipo D | Descripción |
---|---|---|---|---|
CaracterísticasDict | ||||
dialog_act | Tensor | cuerda | ||
dialog_act_delexicalized | Tensor | cuerda | ||
gem_id | Tensor | cuerda | ||
gem_parent_id | Tensor | cuerda | ||
referencias | Secuencia (tensor) | (Ninguna,) | cuerda | |
objetivo | Tensor | cuerda | ||
objetivo_delexicalizado | Tensor | cuerda |
- Ejemplos ( tfds.as_dataframe ):
- Cita :
@inproceedings{cs_restaurants,
address = {Tokyo, Japan},
title = {Neural {Generation} for {Czech}: {Data} and {Baselines} },
shorttitle = {Neural {Generation} for {Czech} },
url = {https://www.aclweb.org/anthology/W19-8670/},
urldate = {2019-10-18},
booktitle = {Proceedings of the 12th {International} {Conference} on {Natural} {Language} {Generation} ({INLG} 2019)},
author = {Dušek, Ondřej and Jurčíček, Filip},
month = oct,
year = {2019},
pages = {563--574}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gema/dardo
Descripción de la configuración : DART es un corpus de generación de registro de datos a texto estructurado de dominio abierto grande con anotaciones de oraciones de alta calidad en las que cada entrada es un conjunto de tripletas entidad-relación que siguen una ontología estructurada en árbol.
Tamaño de la descarga :
28.01 MiB
Tamaño del conjunto de datos :
33.78 MiB
Almacenamiento automático en caché ( documentación ): Sí
Divisiones :
Separar | Ejemplos |
---|---|
'test' | 6,959 |
'train' | 62,659 |
'validation' | 2,768 |
- Estructura de características :
FeaturesDict({
'dart_id': int32,
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'subtree_was_extended': bool,
'target': string,
'target_sources': Sequence(string),
'tripleset': Sequence(string),
})
- Documentación de características :
Rasgo | Clase | Forma | Tipo D | Descripción |
---|---|---|---|---|
CaracterísticasDict | ||||
dart_id | Tensor | int32 | ||
gem_id | Tensor | cuerda | ||
gem_parent_id | Tensor | cuerda | ||
referencias | Secuencia (tensor) | (Ninguna,) | cuerda | |
subtree_was_extended | Tensor | bool | ||
objetivo | Tensor | cuerda | ||
fuentes_objetivo | Secuencia (tensor) | (Ninguna,) | cuerda | |
conjunto triple | Secuencia (tensor) | (Ninguna,) | cuerda |
- Ejemplos ( tfds.as_dataframe ):
- Cita :
@article{radev2020dart,
title=Dart: Open-domain structured data record to text generation,
author={Radev, Dragomir and Zhang, Rui and Rau, Amrit and Sivaprasad, Abhinand and Hsieh, Chiachun and Rajani, Nazneen Fatema and Tang, Xiangru and Vyas, Aadit and Verma, Neha and Krishna, Pranav and others},
journal={arXiv preprint arXiv:2007.02871},
year={2020}
}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
joya/e2e_nlg
Descripción de configuración : el conjunto de datos E2E está diseñado para una tarea de datos a texto de dominio limitado: generación de descripciones/recomendaciones de restaurantes basadas en hasta 8 atributos diferentes (nombre, área, rango de precios, etc.)
Tamaño de descarga :
13.99 MiB
Tamaño del conjunto de datos :
16.92 MiB
Almacenamiento automático en caché ( documentación ): Sí
Divisiones :
Separar | Ejemplos |
---|---|
'challenge_test_scramble' | 500 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test' | 4,693 |
'train' | 33,525 |
'validation' | 4,299 |
- Estructura de características :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'meaning_representation': string,
'references': Sequence(string),
'target': string,
})
- Documentación de características :
Rasgo | Clase | Forma | Tipo D | Descripción |
---|---|---|---|---|
CaracterísticasDict | ||||
gem_id | Tensor | cuerda | ||
gem_parent_id | Tensor | cuerda | ||
significado_representacion | Tensor | cuerda | ||
referencias | Secuencia (tensor) | (Ninguna,) | cuerda | |
objetivo | Tensor | cuerda |
- Ejemplos ( tfds.as_dataframe ):
- Cita :
@inproceedings{e2e_cleaned,
address = {Tokyo, Japan},
title = {Semantic {Noise} {Matters} for {Neural} {Natural} {Language} {Generation} },
url = {https://www.aclweb.org/anthology/W19-8652/},
booktitle = {Proceedings of the 12th {International} {Conference} on {Natural} {Language} {Generation} ({INLG} 2019)},
author = {Dušek, Ondřej and Howcroft, David M and Rieser, Verena},
year = {2019},
pages = {421--426},
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gema/mlsum_de
Descripción de la configuración : MLSum es un conjunto de datos de resumen multilingüe a gran escala. Se construye a partir de medios de comunicación en línea, esta división se centra en el alemán.
Tamaño de la descarga :
345.98 MiB
Tamaño del conjunto de datos :
963.60 MiB
Almacenamiento automático en caché ( documentación ): No
Divisiones :
Separar | Ejemplos |
---|---|
'challenge_test_covid' | 5,058 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test' | 10,695 |
'train' | 220,748 |
'validation' | 11,392 |
- Estructura de características :
FeaturesDict({
'date': string,
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'target': string,
'text': string,
'title': string,
'topic': string,
'url': string,
})
- Documentación de características :
Rasgo | Clase | Forma | Tipo D | Descripción |
---|---|---|---|---|
CaracterísticasDict | ||||
fecha | Tensor | cuerda | ||
gem_id | Tensor | cuerda | ||
gem_parent_id | Tensor | cuerda | ||
referencias | Secuencia (tensor) | (Ninguna,) | cuerda | |
objetivo | Tensor | cuerda | ||
texto | Tensor | cuerda | ||
título | Tensor | cuerda | ||
tema | Tensor | cuerda | ||
URL | Tensor | cuerda |
- Ejemplos ( tfds.as_dataframe ):
- Cita :
@inproceedings{scialom-etal-2020-mlsum,
title = "{MLSUM}: The Multilingual Summarization Corpus",
author = {Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo},
booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
year = {2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gema/mlsum_es
Descripción de la configuración : MLSum es un conjunto de datos de resumen multilingüe a gran escala. Se construye a partir de medios de noticias en línea, esta división se centra en el español.
Tamaño de la descarga :
501.27 MiB
Tamaño del conjunto de datos :
1.29 GiB
Almacenamiento automático en caché ( documentación ): No
Divisiones :
Separar | Ejemplos |
---|---|
'challenge_test_covid' | 1,938 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test' | 13,366 |
'train' | 259,888 |
'validation' | 9,977 |
- Estructura de características :
FeaturesDict({
'date': string,
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'target': string,
'text': string,
'title': string,
'topic': string,
'url': string,
})
- Documentación de características :
Rasgo | Clase | Forma | Tipo D | Descripción |
---|---|---|---|---|
CaracterísticasDict | ||||
fecha | Tensor | cuerda | ||
gem_id | Tensor | cuerda | ||
gem_parent_id | Tensor | cuerda | ||
referencias | Secuencia (tensor) | (Ninguna,) | cuerda | |
objetivo | Tensor | cuerda | ||
texto | Tensor | cuerda | ||
título | Tensor | cuerda | ||
tema | Tensor | cuerda | ||
URL | Tensor | cuerda |
- Ejemplos ( tfds.as_dataframe ):
- Cita :
@inproceedings{scialom-etal-2020-mlsum,
title = "{MLSUM}: The Multilingual Summarization Corpus",
author = {Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo},
booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
year = {2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gema/schema_guided_dialog
Descripción de la configuración : el conjunto de datos del diálogo guiado por esquemas (SGD) contiene diálogos orientados a tareas multidominio de 18 000 entre un ser humano y un asistente virtual, que cubre 17 dominios que van desde bancos y eventos hasta medios, calendario, viajes y clima.
Tamaño de descarga :
17.00 MiB
Tamaño del conjunto de datos :
201.19 MiB
Auto-caché ( documentación ): Sí (challenge_test_backtranslation, challenge_test_bfp02, challenge_test_bfp05, challenge_test_nopunc, challenge_test_scramble, challenge_train_sample, challenge_validation_sample, test, validation), solo cuando
shuffle_files=False
(tren)Divisiones :
Separar | Ejemplos |
---|---|
'challenge_test_backtranslation' | 500 |
'challenge_test_bfp02' | 500 |
'challenge_test_bfp05' | 500 |
'challenge_test_nopunc' | 500 |
'challenge_test_scramble' | 500 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test' | 10,000 |
'train' | 164,982 |
'validation' | 10,000 |
- Estructura de características :
FeaturesDict({
'context': Sequence(string),
'dialog_acts': Sequence({
'act': ClassLabel(shape=(), dtype=int64, num_classes=18),
'slot': string,
'values': Sequence(string),
}),
'dialog_id': string,
'gem_id': string,
'gem_parent_id': string,
'prompt': string,
'references': Sequence(string),
'service': string,
'target': string,
'turn_id': int32,
})
- Documentación de características :
Rasgo | Clase | Forma | Tipo D | Descripción |
---|---|---|---|---|
CaracterísticasDict | ||||
contexto | Secuencia (tensor) | (Ninguna,) | cuerda | |
dialog_acts | Secuencia | |||
dialog_acts/act | Etiqueta de clase | int64 | ||
diálogo_acts/ranura | Tensor | cuerda | ||
dialog_acts/valores | Secuencia (tensor) | (Ninguna,) | cuerda | |
diálogo_id | Tensor | cuerda | ||
gem_id | Tensor | cuerda | ||
gem_parent_id | Tensor | cuerda | ||
inmediato | Tensor | cuerda | ||
referencias | Secuencia (tensor) | (Ninguna,) | cuerda | |
Servicio | Tensor | cuerda | ||
objetivo | Tensor | cuerda | ||
turno_id | Tensor | int32 |
- Ejemplos ( tfds.as_dataframe ):
- Cita :
@article{rastogi2019towards,
title={Towards Scalable Multi-domain Conversational Agents: The Schema-Guided Dialogue Dataset},
author={Rastogi, Abhinav and Zang, Xiaoxue and Sunkara, Srinivas and Gupta, Raghav and Khaitan, Pranav},
journal={arXiv preprint arXiv:1909.05855},
year={2019}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gema/toto
Descripción de la configuración : ToTTo es una tarea NLG de tabla a texto. La tarea es la siguiente: dada una tabla de Wikipedia con nombres de filas, nombres de columnas y celdas de tabla, con un subconjunto de celdas resaltadas, generar una descripción en lenguaje natural para la parte resaltada de la tabla.
Tamaño de la descarga :
180.75 MiB
Tamaño del conjunto de datos :
645.86 MiB
Almacenamiento automático en caché ( documentación ): No
Divisiones :
Separar | Ejemplos |
---|---|
'challenge_test_scramble' | 500 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test' | 7,700 |
'train' | 121,153 |
'validation' | 7,700 |
- Estructura de características :
FeaturesDict({
'example_id': string,
'gem_id': string,
'gem_parent_id': string,
'highlighted_cells': Sequence(Sequence(int32)),
'overlap_subset': string,
'references': Sequence(string),
'sentence_annotations': Sequence({
'final_sentence': string,
'original_sentence': string,
'sentence_after_ambiguity': string,
'sentence_after_deletion': string,
}),
'table': Sequence(Sequence({
'column_span': int32,
'is_header': bool,
'row_span': int32,
'value': string,
})),
'table_page_title': string,
'table_section_text': string,
'table_section_title': string,
'table_webpage_url': string,
'target': string,
'totto_id': int32,
})
- Documentación de características :
Rasgo | Clase | Forma | Tipo D | Descripción |
---|---|---|---|---|
CaracterísticasDict | ||||
ejemplo_id | Tensor | cuerda | ||
gem_id | Tensor | cuerda | ||
gem_parent_id | Tensor | cuerda | ||
celdas_resaltadas | Secuencia(Secuencia(Tensor)) | (Ninguno Ninguno) | int32 | |
superposición_subconjunto | Tensor | cuerda | ||
referencias | Secuencia (tensor) | (Ninguna,) | cuerda | |
anotaciones_de_frases | Secuencia | |||
anotaciones_oracion/oracion_final | Tensor | cuerda | ||
anotaciones_oracion/oracion_original | Tensor | cuerda | ||
anotaciones_oración/oración_después_de_ambigüedad | Tensor | cuerda | ||
anotaciones_frases/frases_después_de_supresión | Tensor | cuerda | ||
mesa | Secuencia | |||
tabla/columna_span | Tensor | int32 | ||
tabla/es_encabezado | Tensor | bool | ||
tabla/fila_span | Tensor | int32 | ||
tabla/valor | Tensor | cuerda | ||
table_page_title | Tensor | cuerda | ||
table_section_text | Tensor | cuerda | ||
table_section_title | Tensor | cuerda | ||
table_webpage_url | Tensor | cuerda | ||
objetivo | Tensor | cuerda | ||
totto_id | Tensor | int32 |
- Ejemplos ( tfds.as_dataframe ):
- Cita :
@inproceedings{parikh2020totto,
title=ToTTo: A Controlled Table-To-Text Generation Dataset,
author={Parikh, Ankur and Wang, Xuezhi and Gehrmann, Sebastian and Faruqui, Manaal and Dhingra, Bhuwan and Yang, Diyi and Das, Dipanjan},
booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
pages={1173--1186},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gem/web_nlg_en
Descripción de la configuración : WebNLG es un conjunto de datos bilingüe (inglés, ruso) de conjuntos triples paralelos de DBpedia y textos breves que cubren alrededor de 450 propiedades diferentes de DBpedia. Los datos de WebNLG se crearon originalmente para promover el desarrollo de verbalizadores RDF capaces de generar texto corto y manejar la microplanificación.
Tamaño de la descarga :
12.57 MiB
Tamaño del conjunto de datos :
19.91 MiB
Almacenamiento automático en caché ( documentación ): Sí
Divisiones :
Separar | Ejemplos |
---|---|
'challenge_test_numbers' | 500 |
'challenge_test_scramble' | 500 |
'challenge_train_sample' | 502 |
'challenge_validation_sample' | 499 |
'test' | 1,779 |
'train' | 35,426 |
'validation' | 1,667 |
- Estructura de características :
FeaturesDict({
'category': string,
'gem_id': string,
'gem_parent_id': string,
'input': Sequence(string),
'references': Sequence(string),
'target': string,
'webnlg_id': string,
})
- Documentación de características :
Rasgo | Clase | Forma | Tipo D | Descripción |
---|---|---|---|---|
CaracterísticasDict | ||||
categoría | Tensor | cuerda | ||
gem_id | Tensor | cuerda | ||
gem_parent_id | Tensor | cuerda | ||
aporte | Secuencia (tensor) | (Ninguna,) | cuerda | |
referencias | Secuencia (tensor) | (Ninguna,) | cuerda | |
objetivo | Tensor | cuerda | ||
webnlg_id | Tensor | cuerda |
- Ejemplos ( tfds.as_dataframe ):
- Cita :
@inproceedings{gardent2017creating,
author = "Gardent, Claire
and Shimorina, Anastasia
and Narayan, Shashi
and Perez-Beltrachini, Laura",
title = "Creating Training Corpora for NLG Micro-Planners",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
year = "2017",
publisher = "Association for Computational Linguistics",
pages = "179--188",
location = "Vancouver, Canada",
doi = "10.18653/v1/P17-1017",
url = "http://www.aclweb.org/anthology/P17-1017"
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
joya/web_nlg_ru
Descripción de la configuración : WebNLG es un conjunto de datos bilingüe (inglés, ruso) de conjuntos triples paralelos de DBpedia y textos breves que cubren alrededor de 450 propiedades diferentes de DBpedia. Los datos de WebNLG se crearon originalmente para promover el desarrollo de verbalizadores RDF capaces de generar texto corto y manejar la microplanificación.
Tamaño de la descarga :
7.49 MiB
Tamaño del conjunto de datos :
11.30 MiB
Almacenamiento automático en caché ( documentación ): Sí
Divisiones :
Separar | Ejemplos |
---|---|
'challenge_test_scramble' | 500 |
'challenge_train_sample' | 501 |
'challenge_validation_sample' | 500 |
'test' | 1,102 |
'train' | 14,630 |
'validation' | 790 |
- Estructura de características :
FeaturesDict({
'category': string,
'gem_id': string,
'gem_parent_id': string,
'input': Sequence(string),
'references': Sequence(string),
'target': string,
'webnlg_id': string,
})
- Documentación de características :
Rasgo | Clase | Forma | Tipo D | Descripción |
---|---|---|---|---|
CaracterísticasDict | ||||
categoría | Tensor | cuerda | ||
gem_id | Tensor | cuerda | ||
gem_parent_id | Tensor | cuerda | ||
aporte | Secuencia (tensor) | (Ninguna,) | cuerda | |
referencias | Secuencia (tensor) | (Ninguna,) | cuerda | |
objetivo | Tensor | cuerda | ||
webnlg_id | Tensor | cuerda |
- Ejemplos ( tfds.as_dataframe ):
- Cita :
@inproceedings{gardent2017creating,
author = "Gardent, Claire
and Shimorina, Anastasia
and Narayan, Shashi
and Perez-Beltrachini, Laura",
title = "Creating Training Corpora for NLG Micro-Planners",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
year = "2017",
publisher = "Association for Computational Linguistics",
pages = "179--188",
location = "Vancouver, Canada",
doi = "10.18653/v1/P17-1017",
url = "http://www.aclweb.org/anthology/P17-1017"
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gema/wiki_auto_asset_turk
Descripción de la configuración : WikiAuto proporciona un conjunto de oraciones alineadas de Wikipedia en inglés y Wikipedia en inglés simple como recurso para entrenar sistemas de simplificación de oraciones. ASSET y TURK son conjuntos de datos de simplificación de alta calidad que se utilizan para las pruebas.
Tamaño de descarga :
121.01 MiB
Tamaño del conjunto de datos :
202.40 MiB
Auto-cached ( documentation ): Yes (challenge_test_asset_backtranslation, challenge_test_asset_bfp02, challenge_test_asset_bfp05, challenge_test_asset_nopunc, challenge_test_turk_backtranslation, challenge_test_turk_bfp02, challenge_test_turk_bfp05, challenge_test_turk_nopunc, challenge_train_sample, challenge_validation_sample, test_asset, test_turk, validation), Only when
shuffle_files=False
(train)Divisiones :
Separar | Ejemplos |
---|---|
'challenge_test_asset_backtranslation' | 359 |
'challenge_test_asset_bfp02' | 359 |
'challenge_test_asset_bfp05' | 359 |
'challenge_test_asset_nopunc' | 359 |
'challenge_test_turk_backtranslation' | 359 |
'challenge_test_turk_bfp02' | 359 |
'challenge_test_turk_bfp05' | 359 |
'challenge_test_turk_nopunc' | 359 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test_asset' | 359 |
'test_turk' | 359 |
'train' | 483,801 |
'validation' | 20,000 |
- Estructura de características :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'target': string,
})
- Documentación de características :
Rasgo | Clase | Forma | Tipo D | Descripción |
---|---|---|---|---|
CaracterísticasDict | ||||
gem_id | Tensor | cuerda | ||
gem_parent_id | Tensor | cuerda | ||
referencias | Secuencia (tensor) | (Ninguna,) | cuerda | |
fuente | Tensor | cuerda | ||
objetivo | Tensor | cuerda |
- Ejemplos ( tfds.as_dataframe ):
- Cita :
@inproceedings{jiang-etal-2020-neural,
title = "Neural {CRF} Model for Sentence Alignment in Text Simplification",
author = "Jiang, Chao and
Maddela, Mounica and
Lan, Wuwei and
Zhong, Yang and
Xu, Wei",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.acl-main.709",
doi = "10.18653/v1/2020.acl-main.709",
pages = "7943--7960",
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gema/xsum
Descripción de configuración : el conjunto de datos es para la tarea de resumen abstracto en su forma extrema, se trata de resumir un documento en una sola oración.
Tamaño de la descarga :
246.31 MiB
Tamaño del conjunto de datos :
78.89 MiB
Almacenamiento automático en caché ( documentación ): Sí
Divisiones :
Separar | Ejemplos |
---|---|
'challenge_test_backtranslation' | 500 |
'challenge_test_bfp_02' | 500 |
'challenge_test_bfp_05' | 500 |
'challenge_test_covid' | 401 |
'challenge_test_nopunc' | 500 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test' | 1,166 |
'train' | 23,206 |
'validation' | 1,117 |
- Estructura de características :
FeaturesDict({
'document': string,
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'target': string,
'xsum_id': string,
})
- Documentación de características :
Rasgo | Clase | Forma | Tipo D | Descripción |
---|---|---|---|---|
CaracterísticasDict | ||||
documento | Tensor | cuerda | ||
gem_id | Tensor | cuerda | ||
gem_parent_id | Tensor | cuerda | ||
referencias | Secuencia (tensor) | (Ninguna,) | cuerda | |
objetivo | Tensor | cuerda | ||
xsum_id | Tensor | cuerda |
- Ejemplos ( tfds.as_dataframe ):
- Cita :
@inproceedings{Narayan2018dont,
author = "Shashi Narayan and Shay B. Cohen and Mirella Lapata",
title = "Don't Give Me the Details, Just the Summary! {T}opic-Aware Convolutional Neural Networks for Extreme Summarization",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing ",
year = "2018",
address = "Brussels, Belgium",
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gema/wiki_lingua_arabic_ar
Descripción de la configuración : Wikilingua es un conjunto de datos multilingüe a gran escala para la evaluación de sistemas de resumen abstracto multilingüe.
Tamaño de la descarga :
56.25 MiB
Tamaño del conjunto de datos :
291.42 MiB
Almacenamiento automático en caché ( documentación ): No
Divisiones :
Separar | Ejemplos |
---|---|
'test' | 5,841 |
'train' | 20,441 |
'validation' | 2,919 |
- Estructura de características :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'ar': Text(shape=(), dtype=string),
'en': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'ar': Text(shape=(), dtype=string),
'en': Text(shape=(), dtype=string),
}),
})
- Documentación de características :
Rasgo | Clase | Forma | Tipo D | Descripción |
---|---|---|---|---|
CaracterísticasDict | ||||
gem_id | Tensor | cuerda | ||
gem_parent_id | Tensor | cuerda | ||
referencias | Secuencia (tensor) | (Ninguna,) | cuerda | |
fuente | Tensor | cuerda | ||
fuente_alineada | Traducción | |||
fuente_alineada/ar | Texto | cuerda | ||
source_aligned/es | Texto | cuerda | ||
objetivo | Tensor | cuerda | ||
objetivo_alineado | Traducción | |||
objetivo_alineado/ar | Texto | cuerda | ||
target_aligned/es | Texto | cuerda |
- Ejemplos ( tfds.as_dataframe ):
- Cita :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gema/wiki_lingua_chinese_zh
Descripción de la configuración : Wikilingua es un conjunto de datos multilingüe a gran escala para la evaluación de sistemas de resumen abstracto multilingüe.
Tamaño de la descarga :
31.38 MiB
Tamaño del conjunto de datos :
122.06 MiB
Almacenamiento automático en caché ( documentación ): Sí
Divisiones :
Separar | Ejemplos |
---|---|
'test' | 3,775 |
'train' | 13,211 |
'validation' | 1,886 |
- Estructura de características :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'zh': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'zh': Text(shape=(), dtype=string),
}),
})
- Documentación de características :
Rasgo | Clase | Forma | Tipo D | Descripción |
---|---|---|---|---|
CaracterísticasDict | ||||
gem_id | Tensor | cuerda | ||
gem_parent_id | Tensor | cuerda | ||
referencias | Secuencia (tensor) | (Ninguna,) | cuerda | |
fuente | Tensor | cuerda | ||
fuente_alineada | Traducción | |||
source_aligned/es | Texto | cuerda | ||
fuente_alineada/zh | Texto | cuerda | ||
objetivo | Tensor | cuerda | ||
objetivo_alineado | Traducción | |||
target_aligned/es | Texto | cuerda | ||
objetivo_alineado/zh | Texto | cuerda |
- Ejemplos ( tfds.as_dataframe ):
- Cita :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gema/wiki_lingua_czech_cs
Descripción de la configuración : Wikilingua es un conjunto de datos multilingüe a gran escala para la evaluación de sistemas de resumen abstracto multilingüe.
Tamaño de la descarga :
13.84 MiB
Tamaño del conjunto de datos :
58.05 MiB
Almacenamiento automático en caché ( documentación ): Sí
Divisiones :
Separar | Ejemplos |
---|---|
'test' | 1,438 |
'train' | 5,033 |
'validation' | 718 |
- Estructura de características :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'cs': Text(shape=(), dtype=string),
'en': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'cs': Text(shape=(), dtype=string),
'en': Text(shape=(), dtype=string),
}),
})
- Documentación de características :
Rasgo | Clase | Forma | Tipo D | Descripción |
---|---|---|---|---|
CaracterísticasDict | ||||
gem_id | Tensor | cuerda | ||
gem_parent_id | Tensor | cuerda | ||
referencias | Secuencia (tensor) | (Ninguna,) | cuerda | |
fuente | Tensor | cuerda | ||
fuente_alineada | Traducción | |||
fuente_alineada/cs | Texto | cuerda | ||
source_aligned/es | Texto | cuerda | ||
objetivo | Tensor | cuerda | ||
objetivo_alineado | Traducción | |||
objetivo_alineado/cs | Texto | cuerda | ||
target_aligned/es | Texto | cuerda |
- Ejemplos ( tfds.as_dataframe ):
- Cita :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gema/wiki_lingua_dutch_nl
Descripción de la configuración : Wikilingua es un conjunto de datos multilingüe a gran escala para la evaluación de sistemas de resumen abstracto multilingüe.
Tamaño de la descarga :
53.88 MiB
Tamaño del conjunto de datos :
237.97 MiB
Almacenamiento automático en caché ( documentación ): Sí (prueba, validación), solo cuando
shuffle_files=False
(tren)Divisiones :
Separar | Ejemplos |
---|---|
'test' | 6,248 |
'train' | 21,866 |
'validation' | 3,123 |
- Estructura de características :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'nl': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'nl': Text(shape=(), dtype=string),
}),
})
- Documentación de características :
Rasgo | Clase | Forma | Tipo D | Descripción |
---|---|---|---|---|
CaracterísticasDict | ||||
gem_id | Tensor | cuerda | ||
gem_parent_id | Tensor | cuerda | ||
referencias | Secuencia (tensor) | (Ninguna,) | cuerda | |
fuente | Tensor | cuerda | ||
fuente_alineada | Traducción | |||
source_aligned/es | Texto | cuerda | ||
fuente_alineada/nl | Texto | cuerda | ||
objetivo | Tensor | cuerda | ||
objetivo_alineado | Traducción | |||
target_aligned/es | Texto | cuerda | ||
objetivo_alineado/nl | Texto | cuerda |
- Ejemplos ( tfds.as_dataframe ):
- Cita :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gema/wiki_lingua_english_en
Descripción de la configuración : Wikilingua es un conjunto de datos multilingüe a gran escala para la evaluación de sistemas de resumen abstracto multilingüe.
Tamaño de la descarga :
112.56 MiB
Tamaño del conjunto de datos :
657.51 MiB
Almacenamiento automático en caché ( documentación ): No
Divisiones :
Separar | Ejemplos |
---|---|
'test' | 28,614 |
'train' | 99,020 |
'validation' | 13,823 |
- Estructura de características :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
}),
})
- Documentación de características :
Rasgo | Clase | Forma | Tipo D | Descripción |
---|---|---|---|---|
CaracterísticasDict | ||||
gem_id | Tensor | cuerda | ||
gem_parent_id | Tensor | cuerda | ||
referencias | Secuencia (tensor) | (Ninguna,) | cuerda | |
fuente | Tensor | cuerda | ||
fuente_alineada | Traducción | |||
source_aligned/es | Texto | cuerda | ||
objetivo | Tensor | cuerda | ||
objetivo_alineado | Traducción | |||
target_aligned/es | Texto | cuerda |
- Ejemplos ( tfds.as_dataframe ):
- Cita :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gema/wiki_lingua_french_fr
Descripción de la configuración : Wikilingua es un conjunto de datos multilingüe a gran escala para la evaluación de sistemas de resumen abstracto multilingüe.
Tamaño de la descarga :
113.26 MiB
Tamaño del conjunto de datos :
522.28 MiB
Almacenamiento automático en caché ( documentación ): No
Divisiones :
Separar | Ejemplos |
---|---|
'test' | 12,731 |
'train' | 44,556 |
'validation' | 6,364 |
- Estructura de características :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'fr': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'fr': Text(shape=(), dtype=string),
}),
})
- Documentación de características :
Rasgo | Clase | Forma | Tipo D | Descripción |
---|---|---|---|---|
CaracterísticasDict | ||||
gem_id | Tensor | cuerda | ||
gem_parent_id | Tensor | cuerda | ||
referencias | Secuencia (tensor) | (Ninguna,) | cuerda | |
fuente | Tensor | cuerda | ||
fuente_alineada | Traducción | |||
source_aligned/es | Texto | cuerda | ||
alineado_fuente/fr | Texto | cuerda | ||
objetivo | Tensor | cuerda | ||
objetivo_alineado | Traducción | |||
target_aligned/es | Texto | cuerda | ||
target_aligned/es | Texto | cuerda |
- Ejemplos ( tfds.as_dataframe ):
- Cita :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gema/wiki_lingua_german_de
Descripción de la configuración : Wikilingua es un conjunto de datos multilingüe a gran escala para la evaluación de sistemas de resumen abstracto multilingüe.
Tamaño de la descarga :
102.65 MiB
Tamaño del conjunto de datos :
452.46 MiB
Almacenamiento automático en caché ( documentación ): No
Divisiones :
Separar | Ejemplos |
---|---|
'test' | 11,669 |
'train' | 40,839 |
'validation' | 5,833 |
- Estructura de características :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'de': Text(shape=(), dtype=string),
'en': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'de': Text(shape=(), dtype=string),
'en': Text(shape=(), dtype=string),
}),
})
- Documentación de características :
Rasgo | Clase | Forma | Tipo D | Descripción |
---|---|---|---|---|
CaracterísticasDict | ||||
gem_id | Tensor | cuerda | ||
gem_parent_id | Tensor | cuerda | ||
referencias | Secuencia (tensor) | (Ninguna,) | cuerda | |
fuente | Tensor | cuerda | ||
fuente_alineada | Traducción | |||
alineado_fuente/de | Texto | cuerda | ||
source_aligned/es | Texto | cuerda | ||
objetivo | Tensor | cuerda | ||
objetivo_alineado | Traducción | |||
objetivo_alineado/de | Texto | cuerda | ||
target_aligned/es | Texto | cuerda |
- Ejemplos ( tfds.as_dataframe ):
- Cita :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gema/wiki_lingua_hindi_hi
Descripción de la configuración : Wikilingua es un conjunto de datos multilingüe a gran escala para la evaluación de sistemas de resumen abstracto multilingüe.
Tamaño de la descarga :
20.07 MiB
Tamaño del conjunto de datos :
138.06 MiB
Almacenamiento automático en caché ( documentación ): Sí
Divisiones :
Separar | Ejemplos |
---|---|
'test' | 1,984 |
'train' | 6,942 |
'validation' | 991 |
- Estructura de características :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'hi': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'hi': Text(shape=(), dtype=string),
}),
})
- Documentación de características :
Rasgo | Clase | Forma | Tipo D | Descripción |
---|---|---|---|---|
CaracterísticasDict | ||||
gem_id | Tensor | cuerda | ||
gem_parent_id | Tensor | cuerda | ||
referencias | Secuencia (tensor) | (Ninguna,) | cuerda | |
fuente | Tensor | cuerda | ||
fuente_alineada | Traducción | |||
source_aligned/es | Texto | cuerda | ||
fuente_alineada/hola | Texto | cuerda | ||
objetivo | Tensor | cuerda | ||
objetivo_alineado | Traducción | |||
target_aligned/es | Texto | cuerda | ||
objetivo_alineado/hola | Texto | cuerda |
- Ejemplos ( tfds.as_dataframe ):
- Cita :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gema/wiki_lingua_indonesian_id
Descripción de la configuración : Wikilingua es un conjunto de datos multilingüe a gran escala para la evaluación de sistemas de resumen abstracto multilingüe.
Tamaño de la descarga :
80.08 MiB
Tamaño del conjunto de datos :
370.63 MiB
Almacenamiento automático en caché ( documentación ): No
Divisiones :
Separar | Ejemplos |
---|---|
'test' | 9,497 |
'train' | 33,237 |
'validation' | 4,747 |
- Estructura de características :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'id': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'id': Text(shape=(), dtype=string),
}),
})
- Documentación de características :
Rasgo | Clase | Forma | Tipo D | Descripción |
---|---|---|---|---|
CaracterísticasDict | ||||
gem_id | Tensor | cuerda | ||
gem_parent_id | Tensor | cuerda | ||
referencias | Secuencia (tensor) | (Ninguna,) | cuerda | |
fuente | Tensor | cuerda | ||
fuente_alineada | Traducción | |||
source_aligned/es | Texto | cuerda | ||
fuente_alineada/id | Texto | cuerda | ||
objetivo | Tensor | cuerda | ||
objetivo_alineado | Traducción | |||
target_aligned/es | Texto | cuerda | ||
target_aligned/id | Texto | cuerda |
- Ejemplos ( tfds.as_dataframe ):
- Cita :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gema/wiki_lingua_italian_it
Descripción de la configuración : Wikilingua es un conjunto de datos multilingüe a gran escala para la evaluación de sistemas de resumen abstracto multilingüe.
Tamaño de la descarga :
84.80 MiB
Tamaño del conjunto de datos :
374.40 MiB
Almacenamiento automático en caché ( documentación ): No
Divisiones :
Separar | Ejemplos |
---|---|
'test' | 10,189 |
'train' | 35,661 |
'validation' | 5,093 |
- Estructura de características :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'it': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'it': Text(shape=(), dtype=string),
}),
})
- Documentación de características :
Rasgo | Clase | Forma | Tipo D | Descripción |
---|---|---|---|---|
CaracterísticasDict | ||||
gem_id | Tensor | cuerda | ||
gem_parent_id | Tensor | cuerda | ||
referencias | Secuencia (tensor) | (Ninguna,) | cuerda | |
fuente | Tensor | cuerda | ||
fuente_alineada | Traducción | |||
source_aligned/es | Texto | cuerda | ||
fuente_alineada/es | Texto | cuerda | ||
objetivo | Tensor | cuerda | ||
objetivo_alineado | Traducción | |||
target_aligned/es | Texto | cuerda | ||
objetivo_alineado/es | Texto | cuerda |
- Ejemplos ( tfds.as_dataframe ):
- Cita :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gema/wiki_lingua_japanese_ja
Descripción de la configuración : Wikilingua es un conjunto de datos multilingüe a gran escala para la evaluación de sistemas de resumen abstracto multilingüe.
Tamaño de la descarga :
21.75 MiB
Tamaño del conjunto de datos :
103.19 MiB
Almacenamiento automático en caché ( documentación ): Sí
Divisiones :
Separar | Ejemplos |
---|---|
'test' | 2,530 |
'train' | 8,853 |
'validation' | 1,264 |
- Estructura de características :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'ja': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'ja': Text(shape=(), dtype=string),
}),
})
- Documentación de características :
Rasgo | Clase | Forma | Tipo D | Descripción |
---|---|---|---|---|
CaracterísticasDict | ||||
gem_id | Tensor | cuerda | ||
gem_parent_id | Tensor | cuerda | ||
referencias | Secuencia (tensor) | (Ninguna,) | cuerda | |
fuente | Tensor | cuerda | ||
fuente_alineada | Traducción | |||
source_aligned/es | Texto | cuerda | ||
fuente_alineada/ja | Texto | cuerda | ||
objetivo | Tensor | cuerda | ||
objetivo_alineado | Traducción | |||
target_aligned/es | Texto | cuerda | ||
objetivo_alineado/ja | Texto | cuerda |
- Ejemplos ( tfds.as_dataframe ):
- Cita :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gema/wiki_lingua_korean_ko
Descripción de la configuración : Wikilingua es un conjunto de datos multilingüe a gran escala para la evaluación de sistemas de resumen abstracto multilingüe.
Tamaño de descarga :
22.26 MiB
Tamaño del conjunto de datos :
102.35 MiB
Almacenamiento automático en caché ( documentación ): Sí
Divisiones :
Separar | Ejemplos |
---|---|
'test' | 2,436 |
'train' | 8,524 |
'validation' | 1,216 |
- Estructura de características :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'ko': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'ko': Text(shape=(), dtype=string),
}),
})
- Documentación de características :
Rasgo | Clase | Forma | Tipo D | Descripción |
---|---|---|---|---|
CaracterísticasDict | ||||
gem_id | Tensor | cuerda | ||
gem_parent_id | Tensor | cuerda | ||
referencias | Secuencia (tensor) | (Ninguna,) | cuerda | |
fuente | Tensor | cuerda | ||
fuente_alineada | Traducción | |||
source_aligned/es | Texto | cuerda | ||
fuente_alineada/ko | Texto | cuerda | ||
objetivo | Tensor | cuerda | ||
objetivo_alineado | Traducción | |||
target_aligned/es | Texto | cuerda | ||
objetivo_alineado/ko | Texto | cuerda |
- Ejemplos ( tfds.as_dataframe ):
- Cita :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gema/wiki_lingua_portugués_pt
Descripción de la configuración : Wikilingua es un conjunto de datos multilingüe a gran escala para la evaluación de sistemas de resumen abstracto multilingüe.
Tamaño de la descarga :
131.17 MiB
Tamaño del conjunto de datos :
570.46 MiB
Almacenamiento automático en caché ( documentación ): No
Divisiones :
Separar | Ejemplos |
---|---|
'test' | 16,331 |
'train' | 57,159 |
'validation' | 8,165 |
- Estructura de características :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'pt': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'pt': Text(shape=(), dtype=string),
}),
})
- Documentación de características :
Rasgo | Clase | Forma | Tipo D | Descripción |
---|---|---|---|---|
CaracterísticasDict | ||||
gem_id | Tensor | cuerda | ||
gem_parent_id | Tensor | cuerda | ||
referencias | Secuencia (tensor) | (Ninguna,) | cuerda | |
fuente | Tensor | cuerda | ||
fuente_alineada | Traducción | |||
source_aligned/es | Texto | cuerda | ||
fuente_alineada/pt | Texto | cuerda | ||
objetivo | Tensor | cuerda | ||
objetivo_alineado | Traducción | |||
target_aligned/es | Texto | cuerda | ||
objetivo_alineado/pt | Texto | cuerda |
- Ejemplos ( tfds.as_dataframe ):
- Cita :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gema/wiki_lingua_ruso_ru
Descripción de la configuración : Wikilingua es un conjunto de datos multilingüe a gran escala para la evaluación de sistemas de resumen abstracto multilingüe.
Tamaño de la descarga :
101.36 MiB
Tamaño del conjunto de datos :
564.69 MiB
Almacenamiento automático en caché ( documentación ): No
Divisiones :
Separar | Ejemplos |
---|---|
'test' | 10,580 |
'train' | 37,028 |
'validation' | 5,288 |
- Estructura de características :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'ru': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'ru': Text(shape=(), dtype=string),
}),
})
- Documentación de características :
Rasgo | Clase | Forma | Tipo D | Descripción |
---|---|---|---|---|
CaracterísticasDict | ||||
gem_id | Tensor | cuerda | ||
gem_parent_id | Tensor | cuerda | ||
referencias | Secuencia (tensor) | (Ninguna,) | cuerda | |
fuente | Tensor | cuerda | ||
fuente_alineada | Traducción | |||
source_aligned/es | Texto | cuerda | ||
fuente_alineada/ru | Texto | cuerda | ||
objetivo | Tensor | cuerda | ||
objetivo_alineado | Traducción | |||
target_aligned/es | Texto | cuerda | ||
objetivo_alineado/ru | Texto | cuerda |
- Ejemplos ( tfds.as_dataframe ):
- Cita :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gem/wiki_lingua_spanish_es
Descripción de la configuración : Wikilingua es un conjunto de datos multilingüe a gran escala para la evaluación de sistemas de resumen abstracto multilingüe.
Tamaño de la descarga :
189.06 MiB
Tamaño del conjunto de datos :
849.75 MiB
Almacenamiento automático en caché ( documentación ): No
Divisiones :
Separar | Ejemplos |
---|---|
'test' | 22,632 |
'train' | 79,212 |
'validation' | 11,316 |
- Estructura de características :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'es': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'es': Text(shape=(), dtype=string),
}),
})
- Documentación de características :
Rasgo | Clase | Forma | Tipo D | Descripción |
---|---|---|---|---|
CaracterísticasDict | ||||
gem_id | Tensor | cuerda | ||
gem_parent_id | Tensor | cuerda | ||
referencias | Secuencia (tensor) | (Ninguna,) | cuerda | |
fuente | Tensor | cuerda | ||
fuente_alineada | Traducción | |||
source_aligned/es | Texto | cuerda | ||
fuente_alineada/es | Texto | cuerda | ||
objetivo | Tensor | cuerda | ||
objetivo_alineado | Traducción | |||
target_aligned/es | Texto | cuerda | ||
objetivo_alineado/es | Texto | cuerda |
- Ejemplos ( tfds.as_dataframe ):
- Cita :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gema/wiki_lingua_thai_th
Descripción de la configuración : Wikilingua es un conjunto de datos multilingüe a gran escala para la evaluación de sistemas de resumen abstracto multilingüe.
Tamaño de descarga :
28.60 MiB
Tamaño del conjunto de datos :
193.77 MiB
Almacenamiento automático en caché ( documentación ): Sí (prueba, validación), solo cuando
shuffle_files=False
(tren)Divisiones :
Separar | Ejemplos |
---|---|
'test' | 2,950 |
'train' | 10,325 |
'validation' | 1,475 |
- Estructura de características :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'th': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'th': Text(shape=(), dtype=string),
}),
})
- Documentación de características :
Rasgo | Clase | Forma | Tipo D | Descripción |
---|---|---|---|---|
CaracterísticasDict | ||||
gem_id | Tensor | cuerda | ||
gem_parent_id | Tensor | cuerda | ||
referencias | Secuencia (tensor) | (Ninguna,) | cuerda | |
fuente | Tensor | cuerda | ||
fuente_alineada | Traducción | |||
source_aligned/es | Texto | cuerda | ||
fuente_alineada/th | Texto | cuerda | ||
objetivo | Tensor | cuerda | ||
objetivo_alineado | Traducción | |||
target_aligned/es | Texto | cuerda | ||
objetivo_alineado/th | Texto | cuerda |
- Ejemplos ( tfds.as_dataframe ):
- Cita :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gema/wiki_lingua_turkish_tr
Descripción de la configuración : Wikilingua es un conjunto de datos multilingüe a gran escala para la evaluación de sistemas de resumen abstracto multilingüe.
Tamaño de la descarga :
6.73 MiB
Tamaño del conjunto de datos :
30.75 MiB
Almacenamiento automático en caché ( documentación ): Sí
Divisiones :
Separar | Ejemplos |
---|---|
'test' | 900 |
'train' | 3,148 |
'validation' | 449 |
- Estructura de características :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'tr': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'tr': Text(shape=(), dtype=string),
}),
})
- Documentación de características :
Rasgo | Clase | Forma | Tipo D | Descripción |
---|---|---|---|---|
CaracterísticasDict | ||||
gem_id | Tensor | cuerda | ||
gem_parent_id | Tensor | cuerda | ||
referencias | Secuencia (tensor) | (Ninguna,) | cuerda | |
fuente | Tensor | cuerda | ||
fuente_alineada | Traducción | |||
source_aligned/es | Texto | cuerda | ||
fuente_alineada/tr | Texto | cuerda | ||
objetivo | Tensor | cuerda | ||
objetivo_alineado | Traducción | |||
target_aligned/es | Texto | cuerda | ||
objetivo_alineado/tr | Texto | cuerda |
- Ejemplos ( tfds.as_dataframe ):
- Cita :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gema/wiki_lingua_vietnamita_vi
Descripción de la configuración : Wikilingua es un conjunto de datos multilingüe a gran escala para la evaluación de sistemas de resumen abstracto multilingüe.
Tamaño de descarga :
36.27 MiB
Tamaño del conjunto de datos :
179.77 MiB
Almacenamiento automático en caché ( documentación ): Sí
Divisiones :
Separar | Ejemplos |
---|---|
'test' | 3,917 |
'train' | 13,707 |
'validation' | 1,957 |
- Estructura de características :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'vi': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'vi': Text(shape=(), dtype=string),
}),
})
- Documentación de características :
Rasgo | Clase | Forma | Tipo D | Descripción |
---|---|---|---|---|
CaracterísticasDict | ||||
gem_id | Tensor | cuerda | ||
gem_parent_id | Tensor | cuerda | ||
referencias | Secuencia (tensor) | (Ninguna,) | cuerda | |
fuente | Tensor | cuerda | ||
fuente_alineada | Traducción | |||
source_aligned/es | Texto | cuerda | ||
fuente_alineada/vi | Texto | cuerda | ||
objetivo | Tensor | cuerda | ||
objetivo_alineado | Traducción | |||
target_aligned/es | Texto | cuerda | ||
objetivo_alineado/vi | Texto | cuerda |
- Ejemplos ( tfds.as_dataframe ):
- Cita :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."