- Описание :
GEM — эталонная среда для генерации естественного языка с упором на его оценку, как с помощью человеческих аннотаций, так и с помощью автоматических метрик.
GEM нацелен на: (1) измерение прогресса NLG по 13 наборам данных, охватывающим множество задач NLG и языков. (2) обеспечить углубленный анализ данных и моделей, представленных в отчетах о данных и наборах задач. (3) разработать стандарты для оценки сгенерированного текста с использованием как автоматических, так и человеческих показателей.
Дополнительную информацию можно найти на https://gem-benchmark.com .
Дополнительная документация : изучить документы с кодом
Домашняя страница : https://gem-benchmark.com
Исходный код :
tfds.text.gem.Gem
Версии :
-
1.0.0
: Начальная версия -
1.0.1
: Обновлен фильтр плохих ссылок для MLSum. -
1.1.0
(по умолчанию): выпуск наборов испытаний
-
Ключи под наблюдением (см . документ
as_supervised
):None
Рисунок ( tfds.show_examples ): не поддерживается.
gem/common_gen (конфигурация по умолчанию)
Описание конфигурации : CommonGen — это задача генерации текста с ограничениями, связанная с эталонным набором данных, для явного тестирования машин на способность к генеративным рассуждениям на основе здравого смысла. Учитывая набор общих понятий; задача состоит в том, чтобы с помощью этих понятий составить связное предложение, описывающее повседневный сценарий.
Размер загрузки :
1.84 MiB
Размер набора данных :
16.84 MiB
.Автоматическое кэширование ( документация ): Да
Сплиты :
Расколоть | Примеры |
---|---|
'challenge_test_scramble' | 500 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test' | 1497 |
'train' | 67 389 |
'validation' | 993 |
- Структура функции :
FeaturesDict({
'concept_set_id': int32,
'concepts': Sequence(string),
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'target': string,
})
- Документация по функциям :
Особенность | Учебный класс | Форма | Dтип | Описание |
---|---|---|---|---|
ОсобенностиDict | ||||
concept_set_id | Тензор | int32 | ||
понятия | Последовательность (тензор) | (Никто,) | нить | |
gem_id | Тензор | нить | ||
gem_parent_id | Тензор | нить | ||
использованная литература | Последовательность (тензор) | (Никто,) | нить | |
цель | Тензор | нить |
- Примеры ( tfds.as_dataframe ):
- Цитата :
@inproceedings{lin2020commongen,
title = "CommonGen: A Constrained Text Generation Challenge for Generative Commonsense Reasoning",
author = "Lin, Bill Yuchen and
Zhou, Wangchunshu and
Shen, Ming and
Zhou, Pei and
Bhagavatula, Chandra and
Choi, Yejin and
Ren, Xiang",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.findings-emnlp.165",
pages = "1823--1840",
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
драгоценный камень/cs_restaurants
Описание конфига : Задача — генерировать ответы в контексте (гипотетической) диалоговой системы, предоставляющей информацию о ресторанах. Ввод представляет собой базовый тип намерения/диалога и список слотов (атрибутов) и их значений. На выходе получается предложение на естественном языке.
Размер загрузки :
1.46 MiB
Размер набора данных :
2.71 MiB
.Автоматическое кэширование ( документация ): Да
Сплиты :
Расколоть | Примеры |
---|---|
'challenge_test_scramble' | 500 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test' | 842 |
'train' | 3569 |
'validation' | 781 |
- Структура функции :
FeaturesDict({
'dialog_act': string,
'dialog_act_delexicalized': string,
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'target': string,
'target_delexicalized': string,
})
- Документация по функциям :
Особенность | Учебный класс | Форма | Dтип | Описание |
---|---|---|---|---|
ОсобенностиDict | ||||
диалог_акт | Тензор | нить | ||
dialog_act_delexicalized | Тензор | нить | ||
gem_id | Тензор | нить | ||
gem_parent_id | Тензор | нить | ||
использованная литература | Последовательность (тензор) | (Никто,) | нить | |
цель | Тензор | нить | ||
target_delexicalized | Тензор | нить |
- Примеры ( tfds.as_dataframe ):
- Цитата :
@inproceedings{cs_restaurants,
address = {Tokyo, Japan},
title = {Neural {Generation} for {Czech}: {Data} and {Baselines} },
shorttitle = {Neural {Generation} for {Czech} },
url = {https://www.aclweb.org/anthology/W19-8670/},
urldate = {2019-10-18},
booktitle = {Proceedings of the 12th {International} {Conference} on {Natural} {Language} {Generation} ({INLG} 2019)},
author = {Dušek, Ondřej and Jurčíček, Filip},
month = oct,
year = {2019},
pages = {563--574}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
драгоценный камень/дротик
Описание конфигурации : DART — это большой структурированный корпус DAta Record to Text с открытым доменом, содержащий высококачественные аннотации предложений, где каждый вход представляет собой набор троек отношений между сущностями, следующих онтологии с древовидной структурой.
Размер загрузки :
28.01 MiB
Размер набора данных :
33.78 MiB
.Автоматическое кэширование ( документация ): Да
Сплиты :
Расколоть | Примеры |
---|---|
'test' | 6959 |
'train' | 62 659 |
'validation' | 2768 |
- Структура функции :
FeaturesDict({
'dart_id': int32,
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'subtree_was_extended': bool,
'target': string,
'target_sources': Sequence(string),
'tripleset': Sequence(string),
})
- Документация по функциям :
Особенность | Учебный класс | Форма | Dтип | Описание |
---|---|---|---|---|
ОсобенностиDict | ||||
dart_id | Тензор | int32 | ||
gem_id | Тензор | нить | ||
gem_parent_id | Тензор | нить | ||
использованная литература | Последовательность (тензор) | (Никто,) | нить | |
subtree_was_extended | Тензор | логический | ||
цель | Тензор | нить | ||
target_sources | Последовательность (тензор) | (Никто,) | нить | |
тройной сет | Последовательность (тензор) | (Никто,) | нить |
- Примеры ( tfds.as_dataframe ):
- Цитата :
@article{radev2020dart,
title=Dart: Open-domain structured data record to text generation,
author={Radev, Dragomir and Zhang, Rui and Rau, Amrit and Sivaprasad, Abhinand and Hsieh, Chiachun and Rajani, Nazneen Fatema and Tang, Xiangru and Vyas, Aadit and Verma, Neha and Krishna, Pranav and others},
journal={arXiv preprint arXiv:2007.02871},
year={2020}
}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
драгоценный камень/e2e_nlg
Описание конфигурации : набор данных E2E предназначен для задачи преобразования данных в текст с ограниченной областью — создание описаний/рекомендаций ресторана на основе до 8 различных атрибутов (название, район, ценовой диапазон и т. д.).
Размер загрузки :
13.99 MiB
Размер набора данных :
16.92 MiB
.Автоматическое кэширование ( документация ): Да
Сплиты :
Расколоть | Примеры |
---|---|
'challenge_test_scramble' | 500 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test' | 4693 |
'train' | 33 525 |
'validation' | 4299 |
- Структура функции :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'meaning_representation': string,
'references': Sequence(string),
'target': string,
})
- Документация по функциям :
Особенность | Учебный класс | Форма | Dтип | Описание |
---|---|---|---|---|
ОсобенностиDict | ||||
gem_id | Тензор | нить | ||
gem_parent_id | Тензор | нить | ||
смысл_представление | Тензор | нить | ||
использованная литература | Последовательность (тензор) | (Никто,) | нить | |
цель | Тензор | нить |
- Примеры ( tfds.as_dataframe ):
- Цитата :
@inproceedings{e2e_cleaned,
address = {Tokyo, Japan},
title = {Semantic {Noise} {Matters} for {Neural} {Natural} {Language} {Generation} },
url = {https://www.aclweb.org/anthology/W19-8652/},
booktitle = {Proceedings of the 12th {International} {Conference} on {Natural} {Language} {Generation} ({INLG} 2019)},
author = {Dušek, Ondřej and Howcroft, David M and Rieser, Verena},
year = {2019},
pages = {421--426},
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
драгоценный камень/mlsum_de
Описание конфигурации : MLSum — это крупномасштабный многоязычный набор данных для суммирования. Он составлен из новостных онлайн-изданий, в этом разделе основное внимание уделяется немецкому языку.
Размер загрузки :
345.98 MiB
Размер набора данных :
963.60 MiB
.Автоматическое кэширование ( документация ): Нет
Сплиты :
Расколоть | Примеры |
---|---|
'challenge_test_covid' | 5058 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test' | 10 695 |
'train' | 220 748 |
'validation' | 11 392 |
- Структура функции :
FeaturesDict({
'date': string,
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'target': string,
'text': string,
'title': string,
'topic': string,
'url': string,
})
- Документация по функциям :
Особенность | Учебный класс | Форма | Dтип | Описание |
---|---|---|---|---|
ОсобенностиDict | ||||
свидание | Тензор | нить | ||
gem_id | Тензор | нить | ||
gem_parent_id | Тензор | нить | ||
использованная литература | Последовательность (тензор) | (Никто,) | нить | |
цель | Тензор | нить | ||
текст | Тензор | нить | ||
заглавие | Тензор | нить | ||
тема | Тензор | нить | ||
URL | Тензор | нить |
- Примеры ( tfds.as_dataframe ):
- Цитата :
@inproceedings{scialom-etal-2020-mlsum,
title = "{MLSUM}: The Multilingual Summarization Corpus",
author = {Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo},
booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
year = {2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
драгоценный камень/mlsum_es
Описание конфигурации : MLSum — это крупномасштабный многоязычный набор данных для суммирования. Он составлен из новостных онлайн-изданий, в этом разделе основное внимание уделяется испанскому языку.
Размер загрузки :
501.27 MiB
Размер набора данных :
1.29 GiB
Автоматическое кэширование ( документация ): Нет
Сплиты :
Расколоть | Примеры |
---|---|
'challenge_test_covid' | 1938 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test' | 13 366 |
'train' | 259 888 |
'validation' | 9977 |
- Структура функции :
FeaturesDict({
'date': string,
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'target': string,
'text': string,
'title': string,
'topic': string,
'url': string,
})
- Документация по функциям :
Особенность | Учебный класс | Форма | Dтип | Описание |
---|---|---|---|---|
ОсобенностиDict | ||||
свидание | Тензор | нить | ||
gem_id | Тензор | нить | ||
gem_parent_id | Тензор | нить | ||
использованная литература | Последовательность (тензор) | (Никто,) | нить | |
цель | Тензор | нить | ||
текст | Тензор | нить | ||
заглавие | Тензор | нить | ||
тема | Тензор | нить | ||
URL | Тензор | нить |
- Примеры ( tfds.as_dataframe ):
- Цитата :
@inproceedings{scialom-etal-2020-mlsum,
title = "{MLSUM}: The Multilingual Summarization Corpus",
author = {Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo},
booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
year = {2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
драгоценный камень/schema_guided_dialog
Описание конфигурации : набор данных Schema-Guided Dialogue (SGD) содержит 18 000 многодоменных диалогов, ориентированных на задачи, между человеком и виртуальным помощником, которые охватывают 17 доменов — от банков и событий до медиа, календаря, путешествий и погоды.
Размер загрузки :
17.00 MiB
Размер набора данных :
201.19 MiB
.Автоматическое кэширование ( документация ): да (challenge_test_backtranslation, challenge_test_bfp02, challenge_test_bfp05, challenge_test_nopunc, challenge_test_scramble, challenge_train_sample, challenge_validation_sample, test, validation), только если
shuffle_files=False
(поезд)Сплиты :
Расколоть | Примеры |
---|---|
'challenge_test_backtranslation' | 500 |
'challenge_test_bfp02' | 500 |
'challenge_test_bfp05' | 500 |
'challenge_test_nopunc' | 500 |
'challenge_test_scramble' | 500 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test' | 10 000 |
'train' | 164 982 |
'validation' | 10 000 |
- Структура функции :
FeaturesDict({
'context': Sequence(string),
'dialog_acts': Sequence({
'act': ClassLabel(shape=(), dtype=int64, num_classes=18),
'slot': string,
'values': Sequence(string),
}),
'dialog_id': string,
'gem_id': string,
'gem_parent_id': string,
'prompt': string,
'references': Sequence(string),
'service': string,
'target': string,
'turn_id': int32,
})
- Документация по функциям :
Особенность | Учебный класс | Форма | Dтип | Описание |
---|---|---|---|---|
ОсобенностиDict | ||||
контекст | Последовательность (тензор) | (Никто,) | нить | |
диалог_акты | Последовательность | |||
dialog_acts/акт | Метка класса | int64 | ||
dialog_acts/слот | Тензор | нить | ||
dialog_acts/значения | Последовательность (тензор) | (Никто,) | нить | |
dialog_id | Тензор | нить | ||
gem_id | Тензор | нить | ||
gem_parent_id | Тензор | нить | ||
быстрый | Тензор | нить | ||
использованная литература | Последовательность (тензор) | (Никто,) | нить | |
оказание услуг | Тензор | нить | ||
цель | Тензор | нить | ||
поворот_идентификатор | Тензор | int32 |
- Примеры ( tfds.as_dataframe ):
- Цитата :
@article{rastogi2019towards,
title={Towards Scalable Multi-domain Conversational Agents: The Schema-Guided Dialogue Dataset},
author={Rastogi, Abhinav and Zang, Xiaoxue and Sunkara, Srinivas and Gupta, Raghav and Khaitan, Pranav},
journal={arXiv preprint arXiv:1909.05855},
year={2019}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
драгоценный камень/тотто
Описание конфигурации : ToTTo — это задача преобразования таблицы в текст NLG. Задача заключается в следующем: для данной таблицы Википедии с именами строк, именами столбцов и ячейками таблицы с выделенным подмножеством ячеек сгенерируйте описание на естественном языке для выделенной части таблицы.
Размер загрузки :
180.75 MiB
Размер набора данных :
645.86 MiB
.Автоматическое кэширование ( документация ): Нет
Сплиты :
Расколоть | Примеры |
---|---|
'challenge_test_scramble' | 500 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test' | 7700 |
'train' | 121 153 |
'validation' | 7700 |
- Структура функции :
FeaturesDict({
'example_id': string,
'gem_id': string,
'gem_parent_id': string,
'highlighted_cells': Sequence(Sequence(int32)),
'overlap_subset': string,
'references': Sequence(string),
'sentence_annotations': Sequence({
'final_sentence': string,
'original_sentence': string,
'sentence_after_ambiguity': string,
'sentence_after_deletion': string,
}),
'table': Sequence(Sequence({
'column_span': int32,
'is_header': bool,
'row_span': int32,
'value': string,
})),
'table_page_title': string,
'table_section_text': string,
'table_section_title': string,
'table_webpage_url': string,
'target': string,
'totto_id': int32,
})
- Документация по функциям :
Особенность | Учебный класс | Форма | Dтип | Описание |
---|---|---|---|---|
ОсобенностиDict | ||||
example_id | Тензор | нить | ||
gem_id | Тензор | нить | ||
gem_parent_id | Тензор | нить | ||
выделенные_ячейки | Последовательность (Последовательность (Тензор)) | (Нет, Нет) | int32 | |
перекрытие_подмножество | Тензор | нить | ||
использованная литература | Последовательность (тензор) | (Никто,) | нить | |
предложение_аннотации | Последовательность | |||
предложение_аннотации/окончательное_предложение | Тензор | нить | ||
предложение_аннотации/оригинальное_предложение | Тензор | нить | ||
предложение_аннотаций/предложение_после_двусмысленности | Тензор | нить | ||
предложение_аннотации/предложение_после_удаления | Тензор | нить | ||
стол | Последовательность | |||
таблица/column_span | Тензор | int32 | ||
таблица/is_header | Тензор | логический | ||
таблица / row_span | Тензор | int32 | ||
таблица/значение | Тензор | нить | ||
table_page_title | Тензор | нить | ||
table_section_text | Тензор | нить | ||
table_section_title | Тензор | нить | ||
table_webpage_url | Тензор | нить | ||
цель | Тензор | нить | ||
totto_id | Тензор | int32 |
- Примеры ( tfds.as_dataframe ):
- Цитата :
@inproceedings{parikh2020totto,
title=ToTTo: A Controlled Table-To-Text Generation Dataset,
author={Parikh, Ankur and Wang, Xuezhi and Gehrmann, Sebastian and Faruqui, Manaal and Dhingra, Bhuwan and Yang, Diyi and Das, Dipanjan},
booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
pages={1173--1186},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
драгоценный камень/web_nlg_en
Описание конфигурации : WebNLG — это двуязычный набор данных (английский, русский) параллельных наборов троек DBpedia и коротких текстов, охватывающих около 450 различных свойств DBpedia. Данные WebNLG изначально были созданы для содействия развитию вербализаторов RDF, способных генерировать короткие тексты и выполнять микропланирование.
Размер загрузки :
12.57 MiB
Размер набора данных :
19.91 MiB
.Автоматическое кэширование ( документация ): Да
Сплиты :
Расколоть | Примеры |
---|---|
'challenge_test_numbers' | 500 |
'challenge_test_scramble' | 500 |
'challenge_train_sample' | 502 |
'challenge_validation_sample' | 499 |
'test' | 1779 |
'train' | 35 426 |
'validation' | 1667 |
- Структура функции :
FeaturesDict({
'category': string,
'gem_id': string,
'gem_parent_id': string,
'input': Sequence(string),
'references': Sequence(string),
'target': string,
'webnlg_id': string,
})
- Документация по функциям :
Особенность | Учебный класс | Форма | Dтип | Описание |
---|---|---|---|---|
ОсобенностиDict | ||||
категория | Тензор | нить | ||
gem_id | Тензор | нить | ||
gem_parent_id | Тензор | нить | ||
вход | Последовательность (тензор) | (Никто,) | нить | |
использованная литература | Последовательность (тензор) | (Никто,) | нить | |
цель | Тензор | нить | ||
webnlg_id | Тензор | нить |
- Примеры ( tfds.as_dataframe ):
- Цитата :
@inproceedings{gardent2017creating,
author = "Gardent, Claire
and Shimorina, Anastasia
and Narayan, Shashi
and Perez-Beltrachini, Laura",
title = "Creating Training Corpora for NLG Micro-Planners",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
year = "2017",
publisher = "Association for Computational Linguistics",
pages = "179--188",
location = "Vancouver, Canada",
doi = "10.18653/v1/P17-1017",
url = "http://www.aclweb.org/anthology/P17-1017"
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
гем/web_nlg_ru
Описание конфигурации : WebNLG — это двуязычный набор данных (английский, русский) параллельных наборов троек DBpedia и коротких текстов, охватывающих около 450 различных свойств DBpedia. Данные WebNLG изначально были созданы для содействия развитию вербализаторов RDF, способных генерировать короткие тексты и выполнять микропланирование.
Размер загрузки :
7.49 MiB
Размер набора данных :
11.30 MiB
.Автоматическое кэширование ( документация ): Да
Сплиты :
Расколоть | Примеры |
---|---|
'challenge_test_scramble' | 500 |
'challenge_train_sample' | 501 |
'challenge_validation_sample' | 500 |
'test' | 1102 |
'train' | 14 630 |
'validation' | 790 |
- Структура функции :
FeaturesDict({
'category': string,
'gem_id': string,
'gem_parent_id': string,
'input': Sequence(string),
'references': Sequence(string),
'target': string,
'webnlg_id': string,
})
- Документация по функциям :
Особенность | Учебный класс | Форма | Dтип | Описание |
---|---|---|---|---|
ОсобенностиDict | ||||
категория | Тензор | нить | ||
gem_id | Тензор | нить | ||
gem_parent_id | Тензор | нить | ||
вход | Последовательность (тензор) | (Никто,) | нить | |
использованная литература | Последовательность (тензор) | (Никто,) | нить | |
цель | Тензор | нить | ||
webnlg_id | Тензор | нить |
- Примеры ( tfds.as_dataframe ):
- Цитата :
@inproceedings{gardent2017creating,
author = "Gardent, Claire
and Shimorina, Anastasia
and Narayan, Shashi
and Perez-Beltrachini, Laura",
title = "Creating Training Corpora for NLG Micro-Planners",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
year = "2017",
publisher = "Association for Computational Linguistics",
pages = "179--188",
location = "Vancouver, Canada",
doi = "10.18653/v1/P17-1017",
url = "http://www.aclweb.org/anthology/P17-1017"
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
драгоценный камень/wiki_auto_asset_turk
Описание конфигурации : WikiAuto предоставляет набор выровненных предложений из английской Википедии и Simple English Wikipedia в качестве ресурса для обучения систем упрощения предложений. ASSET и TURK — это высококачественные наборы данных упрощения, используемые для тестирования.
Размер загрузки :
121.01 MiB
Размер набора данных :
202.40 MiB
.Auto-cached ( documentation ): Yes (challenge_test_asset_backtranslation, challenge_test_asset_bfp02, challenge_test_asset_bfp05, challenge_test_asset_nopunc, challenge_test_turk_backtranslation, challenge_test_turk_bfp02, challenge_test_turk_bfp05, challenge_test_turk_nopunc, challenge_train_sample, challenge_validation_sample, test_asset, test_turk, validation), Only when
shuffle_files=False
(train)Сплиты :
Расколоть | Примеры |
---|---|
'challenge_test_asset_backtranslation' | 359 |
'challenge_test_asset_bfp02' | 359 |
'challenge_test_asset_bfp05' | 359 |
'challenge_test_asset_nopunc' | 359 |
'challenge_test_turk_backtranslation' | 359 |
'challenge_test_turk_bfp02' | 359 |
'challenge_test_turk_bfp05' | 359 |
'challenge_test_turk_nopunc' | 359 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test_asset' | 359 |
'test_turk' | 359 |
'train' | 483 801 |
'validation' | 20 000 |
- Структура функции :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'target': string,
})
- Документация по функциям :
Особенность | Учебный класс | Форма | Dтип | Описание |
---|---|---|---|---|
ОсобенностиDict | ||||
gem_id | Тензор | нить | ||
gem_parent_id | Тензор | нить | ||
использованная литература | Последовательность (тензор) | (Никто,) | нить | |
источник | Тензор | нить | ||
цель | Тензор | нить |
- Примеры ( tfds.as_dataframe ):
- Цитата :
@inproceedings{jiang-etal-2020-neural,
title = "Neural {CRF} Model for Sentence Alignment in Text Simplification",
author = "Jiang, Chao and
Maddela, Mounica and
Lan, Wuwei and
Zhong, Yang and
Xu, Wei",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.acl-main.709",
doi = "10.18653/v1/2020.acl-main.709",
pages = "7943--7960",
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
драгоценный камень/сумма
Описание конфигурации : набор данных предназначен для задачи абстрактного обобщения в его крайней форме, речь идет об обобщении документа в одном предложении.
Размер загрузки :
246.31 MiB
Размер набора данных :
78.89 MiB
.Автоматическое кэширование ( документация ): Да
Сплиты :
Расколоть | Примеры |
---|---|
'challenge_test_backtranslation' | 500 |
'challenge_test_bfp_02' | 500 |
'challenge_test_bfp_05' | 500 |
'challenge_test_covid' | 401 |
'challenge_test_nopunc' | 500 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test' | 1166 |
'train' | 23 206 |
'validation' | 1117 |
- Структура функции :
FeaturesDict({
'document': string,
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'target': string,
'xsum_id': string,
})
- Документация по функциям :
Особенность | Учебный класс | Форма | Dтип | Описание |
---|---|---|---|---|
ОсобенностиDict | ||||
документ | Тензор | нить | ||
gem_id | Тензор | нить | ||
gem_parent_id | Тензор | нить | ||
использованная литература | Последовательность (тензор) | (Никто,) | нить | |
цель | Тензор | нить | ||
xsum_id | Тензор | нить |
- Примеры ( tfds.as_dataframe ):
- Цитата :
@inproceedings{Narayan2018dont,
author = "Shashi Narayan and Shay B. Cohen and Mirella Lapata",
title = "Don't Give Me the Details, Just the Summary! {T}opic-Aware Convolutional Neural Networks for Extreme Summarization",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing ",
year = "2018",
address = "Brussels, Belgium",
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
драгоценный камень/wiki_lingua_arabic_ar
Описание конфигурации : Wikilingua — это крупномасштабный многоязычный набор данных для оценки межъязыковых систем абстрактного обобщения.
Размер загрузки :
56.25 MiB
.Размер набора данных :
291.42 MiB
.Автоматическое кэширование ( документация ): Нет
Сплиты :
Расколоть | Примеры |
---|---|
'test' | 5841 |
'train' | 20 441 |
'validation' | 2919 |
- Структура функции :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'ar': Text(shape=(), dtype=string),
'en': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'ar': Text(shape=(), dtype=string),
'en': Text(shape=(), dtype=string),
}),
})
- Документация по функциям :
Особенность | Учебный класс | Форма | Dтип | Описание |
---|---|---|---|---|
ОсобенностиDict | ||||
gem_id | Тензор | нить | ||
gem_parent_id | Тензор | нить | ||
использованная литература | Последовательность (тензор) | (Никто,) | нить | |
источник | Тензор | нить | ||
source_aligned | Перевод | |||
source_aligned/ar | Текст | нить | ||
source_aligned/ru | Текст | нить | ||
цель | Тензор | нить | ||
target_aligned | Перевод | |||
target_aligned/ar | Текст | нить | ||
target_aligned/ru | Текст | нить |
- Примеры ( tfds.as_dataframe ):
- Цитата :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
драгоценный камень/wiki_lingua_chinese_zh
Описание конфигурации : Wikilingua — это крупномасштабный многоязычный набор данных для оценки межъязыковых систем абстрактного обобщения.
Размер загрузки :
31.38 MiB
Размер набора данных :
122.06 MiB
.Автоматическое кэширование ( документация ): Да
Сплиты :
Расколоть | Примеры |
---|---|
'test' | 3775 |
'train' | 13 211 |
'validation' | 1886 |
- Структура функции :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'zh': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'zh': Text(shape=(), dtype=string),
}),
})
- Документация по функциям :
Особенность | Учебный класс | Форма | Dтип | Описание |
---|---|---|---|---|
ОсобенностиDict | ||||
gem_id | Тензор | нить | ||
gem_parent_id | Тензор | нить | ||
использованная литература | Последовательность (тензор) | (Никто,) | нить | |
источник | Тензор | нить | ||
source_aligned | Перевод | |||
source_aligned/ru | Текст | нить | ||
source_aligned/ж | Текст | нить | ||
цель | Тензор | нить | ||
target_aligned | Перевод | |||
target_aligned/ru | Текст | нить | ||
target_aligned/ж | Текст | нить |
- Примеры ( tfds.as_dataframe ):
- Цитата :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
драгоценный камень/wiki_lingua_czech_cs
Описание конфигурации : Wikilingua — это крупномасштабный многоязычный набор данных для оценки межъязыковых систем абстрактного обобщения.
Размер загрузки :
13.84 MiB
Размер набора данных :
58.05 MiB
.Автоматическое кэширование ( документация ): Да
Сплиты :
Расколоть | Примеры |
---|---|
'test' | 1438 |
'train' | 5033 |
'validation' | 718 |
- Структура функции :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'cs': Text(shape=(), dtype=string),
'en': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'cs': Text(shape=(), dtype=string),
'en': Text(shape=(), dtype=string),
}),
})
- Документация по функциям :
Особенность | Учебный класс | Форма | Dтип | Описание |
---|---|---|---|---|
ОсобенностиDict | ||||
gem_id | Тензор | нить | ||
gem_parent_id | Тензор | нить | ||
использованная литература | Последовательность (тензор) | (Никто,) | нить | |
источник | Тензор | нить | ||
source_aligned | Перевод | |||
source_aligned/cs | Текст | нить | ||
source_aligned/ru | Текст | нить | ||
цель | Тензор | нить | ||
target_aligned | Перевод | |||
target_aligned/cs | Текст | нить | ||
target_aligned/ru | Текст | нить |
- Примеры ( tfds.as_dataframe ):
- Цитата :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
драгоценный камень/wiki_lingua_dutch_nl
Описание конфигурации : Wikilingua — это крупномасштабный многоязычный набор данных для оценки межъязыковых систем абстрактного обобщения.
Размер загрузки :
53.88 MiB
Размер набора данных :
237.97 MiB
.Автоматическое кэширование ( документация ): да (тест, проверка), только если
shuffle_files=False
(поезд)Сплиты :
Расколоть | Примеры |
---|---|
'test' | 6248 |
'train' | 21 866 |
'validation' | 3123 |
- Структура функции :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'nl': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'nl': Text(shape=(), dtype=string),
}),
})
- Документация по функциям :
Особенность | Учебный класс | Форма | Dтип | Описание |
---|---|---|---|---|
ОсобенностиDict | ||||
gem_id | Тензор | нить | ||
gem_parent_id | Тензор | нить | ||
использованная литература | Последовательность (тензор) | (Никто,) | нить | |
источник | Тензор | нить | ||
source_aligned | Перевод | |||
source_aligned/ru | Текст | нить | ||
source_aligned/nl | Текст | нить | ||
цель | Тензор | нить | ||
target_aligned | Перевод | |||
target_aligned/ru | Текст | нить | ||
target_aligned/nl | Текст | нить |
- Примеры ( tfds.as_dataframe ):
- Цитата :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
драгоценный камень/wiki_lingua_english_en
Описание конфигурации : Wikilingua — это крупномасштабный многоязычный набор данных для оценки межъязыковых систем абстрактного обобщения.
Размер загрузки :
112.56 MiB
Размер набора данных :
657.51 MiB
.Автоматическое кэширование ( документация ): Нет
Сплиты :
Расколоть | Примеры |
---|---|
'test' | 28 614 |
'train' | 99 020 |
'validation' | 13 823 |
- Структура функции :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
}),
})
- Документация по функциям :
Особенность | Учебный класс | Форма | Dтип | Описание |
---|---|---|---|---|
ОсобенностиDict | ||||
gem_id | Тензор | нить | ||
gem_parent_id | Тензор | нить | ||
использованная литература | Последовательность (тензор) | (Никто,) | нить | |
источник | Тензор | нить | ||
source_aligned | Перевод | |||
source_aligned/ru | Текст | нить | ||
цель | Тензор | нить | ||
target_aligned | Перевод | |||
target_aligned/ru | Текст | нить |
- Примеры ( tfds.as_dataframe ):
- Цитата :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
жемчужина/wiki_lingua_french_fr
Описание конфигурации : Wikilingua — это крупномасштабный многоязычный набор данных для оценки межъязыковых систем абстрактного обобщения.
Размер загрузки :
113.26 MiB
Размер набора данных :
522.28 MiB
.Автоматическое кэширование ( документация ): Нет
Сплиты :
Расколоть | Примеры |
---|---|
'test' | 12 731 |
'train' | 44 556 |
'validation' | 6364 |
- Структура функции :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'fr': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'fr': Text(shape=(), dtype=string),
}),
})
- Документация по функциям :
Особенность | Учебный класс | Форма | Dтип | Описание |
---|---|---|---|---|
ОсобенностиDict | ||||
gem_id | Тензор | нить | ||
gem_parent_id | Тензор | нить | ||
использованная литература | Последовательность (тензор) | (Никто,) | нить | |
источник | Тензор | нить | ||
source_aligned | Перевод | |||
source_aligned/ru | Текст | нить | ||
source_aligned/fr | Текст | нить | ||
цель | Тензор | нить | ||
target_aligned | Перевод | |||
target_aligned/ru | Текст | нить | ||
target_aligned/fr | Текст | нить |
- Примеры ( tfds.as_dataframe ):
- Цитата :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
драгоценный камень/wiki_lingua_german_de
Описание конфигурации : Wikilingua — это крупномасштабный многоязычный набор данных для оценки межъязыковых систем абстрактного обобщения.
Размер загрузки :
102.65 MiB
Размер набора данных :
452.46 MiB
.Автоматическое кэширование ( документация ): Нет
Сплиты :
Расколоть | Примеры |
---|---|
'test' | 11 669 |
'train' | 40 839 |
'validation' | 5833 |
- Структура функции :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'de': Text(shape=(), dtype=string),
'en': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'de': Text(shape=(), dtype=string),
'en': Text(shape=(), dtype=string),
}),
})
- Документация по функциям :
Особенность | Учебный класс | Форма | Dтип | Описание |
---|---|---|---|---|
ОсобенностиDict | ||||
gem_id | Тензор | нить | ||
gem_parent_id | Тензор | нить | ||
использованная литература | Последовательность (тензор) | (Никто,) | нить | |
источник | Тензор | нить | ||
source_aligned | Перевод | |||
source_aligned/de | Текст | нить | ||
source_aligned/ru | Текст | нить | ||
цель | Тензор | нить | ||
target_aligned | Перевод | |||
target_aligned/de | Текст | нить | ||
target_aligned/ru | Текст | нить |
- Примеры ( tfds.as_dataframe ):
- Цитата :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
драгоценный камень/wiki_lingua_hindi_hi
Описание конфигурации : Wikilingua — это крупномасштабный многоязычный набор данных для оценки межъязыковых систем абстрактного обобщения.
Размер загрузки :
20.07 MiB
Размер набора данных :
138.06 MiB
.Автоматическое кэширование ( документация ): Да
Сплиты :
Расколоть | Примеры |
---|---|
'test' | 1984 |
'train' | 6942 |
'validation' | 991 |
- Структура функции :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'hi': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'hi': Text(shape=(), dtype=string),
}),
})
- Документация по функциям :
Особенность | Учебный класс | Форма | Dтип | Описание |
---|---|---|---|---|
ОсобенностиDict | ||||
gem_id | Тензор | нить | ||
gem_parent_id | Тензор | нить | ||
использованная литература | Последовательность (тензор) | (Никто,) | нить | |
источник | Тензор | нить | ||
source_aligned | Перевод | |||
source_aligned/ru | Текст | нить | ||
source_aligned/привет | Текст | нить | ||
цель | Тензор | нить | ||
target_aligned | Перевод | |||
target_aligned/ru | Текст | нить | ||
target_aligned/привет | Текст | нить |
- Примеры ( tfds.as_dataframe ):
- Цитата :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
драгоценный камень/wiki_lingua_indonesian_id
Описание конфигурации : Wikilingua — это крупномасштабный многоязычный набор данных для оценки межъязыковых систем абстрактного обобщения.
Размер загрузки :
80.08 MiB
Размер набора данных :
370.63 MiB
.Автоматическое кэширование ( документация ): Нет
Сплиты :
Расколоть | Примеры |
---|---|
'test' | 9497 |
'train' | 33 237 |
'validation' | 4747 |
- Структура функции :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'id': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'id': Text(shape=(), dtype=string),
}),
})
- Документация по функциям :
Особенность | Учебный класс | Форма | Dтип | Описание |
---|---|---|---|---|
ОсобенностиDict | ||||
gem_id | Тензор | нить | ||
gem_parent_id | Тензор | нить | ||
использованная литература | Последовательность (тензор) | (Никто,) | нить | |
источник | Тензор | нить | ||
source_aligned | Перевод | |||
source_aligned/ru | Текст | нить | ||
source_aligned/идентификатор | Текст | нить | ||
цель | Тензор | нить | ||
target_aligned | Перевод | |||
target_aligned/ru | Текст | нить | ||
target_aligned/идентификатор | Текст | нить |
- Примеры ( tfds.as_dataframe ):
- Цитата :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
драгоценный камень/wiki_lingua_italian_it
Описание конфигурации : Wikilingua — это крупномасштабный многоязычный набор данных для оценки межъязыковых систем абстрактного обобщения.
Размер загрузки :
84.80 MiB
Размер набора данных :
374.40 MiB
.Автоматическое кэширование ( документация ): Нет
Сплиты :
Расколоть | Примеры |
---|---|
'test' | 10 189 |
'train' | 35 661 |
'validation' | 5093 |
- Структура функции :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'it': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'it': Text(shape=(), dtype=string),
}),
})
- Документация по функциям :
Особенность | Учебный класс | Форма | Dтип | Описание |
---|---|---|---|---|
ОсобенностиDict | ||||
gem_id | Тензор | нить | ||
gem_parent_id | Тензор | нить | ||
использованная литература | Последовательность (тензор) | (Никто,) | нить | |
источник | Тензор | нить | ||
source_aligned | Перевод | |||
source_aligned/ru | Текст | нить | ||
source_aligned/это | Текст | нить | ||
цель | Тензор | нить | ||
target_aligned | Перевод | |||
target_aligned/ru | Текст | нить | ||
target_aligned/это | Текст | нить |
- Примеры ( tfds.as_dataframe ):
- Цитата :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
драгоценный камень/wiki_lingua_japanese_ja
Описание конфигурации : Wikilingua — это крупномасштабный многоязычный набор данных для оценки межъязыковых систем абстрактного обобщения.
Размер загрузки :
21.75 MiB
.Размер набора данных :
103.19 MiB
.Автоматическое кэширование ( документация ): Да
Сплиты :
Расколоть | Примеры |
---|---|
'test' | 2530 |
'train' | 8853 |
'validation' | 1264 |
- Структура функции :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'ja': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'ja': Text(shape=(), dtype=string),
}),
})
- Документация по функциям :
Особенность | Учебный класс | Форма | Dтип | Описание |
---|---|---|---|---|
ОсобенностиDict | ||||
gem_id | Тензор | нить | ||
gem_parent_id | Тензор | нить | ||
использованная литература | Последовательность (тензор) | (Никто,) | нить | |
источник | Тензор | нить | ||
source_aligned | Перевод | |||
source_aligned/ru | Текст | нить | ||
source_aligned/ja | Текст | нить | ||
цель | Тензор | нить | ||
target_aligned | Перевод | |||
target_aligned/ru | Текст | нить | ||
target_aligned/ja | Текст | нить |
- Примеры ( tfds.as_dataframe ):
- Цитата :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
драгоценный камень/wiki_lingua_korean_ko
Описание конфигурации : Wikilingua — это крупномасштабный многоязычный набор данных для оценки межъязыковых систем абстрактного обобщения.
Размер загрузки :
22.26 MiB
Размер набора данных :
102.35 MiB
.Автоматическое кэширование ( документация ): Да
Сплиты :
Расколоть | Примеры |
---|---|
'test' | 2436 |
'train' | 8 524 |
'validation' | 1216 |
- Структура функции :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'ko': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'ko': Text(shape=(), dtype=string),
}),
})
- Документация по функциям :
Особенность | Учебный класс | Форма | Dтип | Описание |
---|---|---|---|---|
ОсобенностиDict | ||||
gem_id | Тензор | нить | ||
gem_parent_id | Тензор | нить | ||
использованная литература | Последовательность (тензор) | (Никто,) | нить | |
источник | Тензор | нить | ||
source_aligned | Перевод | |||
source_aligned/ru | Текст | нить | ||
source_aligned/ko | Текст | нить | ||
цель | Тензор | нить | ||
target_aligned | Перевод | |||
target_aligned/ru | Текст | нить | ||
target_aligned/ko | Текст | нить |
- Примеры ( tfds.as_dataframe ):
- Цитата :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
драгоценный камень/wiki_lingua_portuguese_pt
Описание конфигурации : Wikilingua — это крупномасштабный многоязычный набор данных для оценки межъязыковых систем абстрактного обобщения.
Размер загрузки :
131.17 MiB
Размер набора данных :
570.46 MiB
.Автоматическое кэширование ( документация ): Нет
Сплиты :
Расколоть | Примеры |
---|---|
'test' | 16 331 |
'train' | 57 159 |
'validation' | 8165 |
- Структура функции :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'pt': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'pt': Text(shape=(), dtype=string),
}),
})
- Документация по функциям :
Особенность | Учебный класс | Форма | Dтип | Описание |
---|---|---|---|---|
ОсобенностиDict | ||||
gem_id | Тензор | нить | ||
gem_parent_id | Тензор | нить | ||
использованная литература | Последовательность (тензор) | (Никто,) | нить | |
источник | Тензор | нить | ||
source_aligned | Перевод | |||
source_aligned/ru | Текст | нить | ||
source_aligned/pt | Текст | нить | ||
цель | Тензор | нить | ||
target_aligned | Перевод | |||
target_aligned/ru | Текст | нить | ||
target_aligned/pt | Текст | нить |
- Примеры ( tfds.as_dataframe ):
- Цитата :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gem/wiki_lingua_russian_ru
Описание конфигурации : Wikilingua — это крупномасштабный многоязычный набор данных для оценки межъязыковых систем абстрактного обобщения.
Размер загрузки :
101.36 MiB
Размер набора данных :
564.69 MiB
.Автоматическое кэширование ( документация ): Нет
Сплиты :
Расколоть | Примеры |
---|---|
'test' | 10 580 |
'train' | 37 028 |
'validation' | 5288 |
- Структура функции :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'ru': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'ru': Text(shape=(), dtype=string),
}),
})
- Документация по функциям :
Особенность | Учебный класс | Форма | Dтип | Описание |
---|---|---|---|---|
ОсобенностиDict | ||||
gem_id | Тензор | нить | ||
gem_parent_id | Тензор | нить | ||
использованная литература | Последовательность (тензор) | (Никто,) | нить | |
источник | Тензор | нить | ||
source_aligned | Перевод | |||
source_aligned/ru | Текст | нить | ||
source_aligned/ru | Текст | нить | ||
цель | Тензор | нить | ||
target_aligned | Перевод | |||
target_aligned/ru | Текст | нить | ||
target_aligned/ru | Текст | нить |
- Примеры ( tfds.as_dataframe ):
- Цитата :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
драгоценный камень/wiki_lingua_spanish_es
Описание конфигурации : Wikilingua — это крупномасштабный многоязычный набор данных для оценки межъязыковых систем абстрактного обобщения.
Размер загрузки :
189.06 MiB
Размер набора данных :
849.75 MiB
.Автоматическое кэширование ( документация ): Нет
Сплиты :
Расколоть | Примеры |
---|---|
'test' | 22 632 |
'train' | 79 212 |
'validation' | 11 316 |
- Структура функции :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'es': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'es': Text(shape=(), dtype=string),
}),
})
- Документация по функциям :
Особенность | Учебный класс | Форма | Dтип | Описание |
---|---|---|---|---|
ОсобенностиDict | ||||
gem_id | Тензор | нить | ||
gem_parent_id | Тензор | нить | ||
использованная литература | Последовательность (тензор) | (Никто,) | нить | |
источник | Тензор | нить | ||
source_aligned | Перевод | |||
source_aligned/ru | Текст | нить | ||
source_aligned/es | Текст | нить | ||
цель | Тензор | нить | ||
target_aligned | Перевод | |||
target_aligned/ru | Текст | нить | ||
target_aligned/es | Текст | нить |
- Примеры ( tfds.as_dataframe ):
- Цитата :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
драгоценный камень/wiki_lingua_thai_th
Описание конфигурации : Wikilingua — это крупномасштабный многоязычный набор данных для оценки межъязыковых систем абстрактного обобщения.
Размер загрузки :
28.60 MiB
Размер набора данных :
193.77 MiB
.Автоматическое кэширование ( документация ): да (тест, проверка), только если
shuffle_files=False
(поезд)Сплиты :
Расколоть | Примеры |
---|---|
'test' | 2950 |
'train' | 10 325 |
'validation' | 1475 |
- Структура функции :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'th': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'th': Text(shape=(), dtype=string),
}),
})
- Документация по функциям :
Особенность | Учебный класс | Форма | Dтип | Описание |
---|---|---|---|---|
ОсобенностиDict | ||||
gem_id | Тензор | нить | ||
gem_parent_id | Тензор | нить | ||
использованная литература | Последовательность (тензор) | (Никто,) | нить | |
источник | Тензор | нить | ||
source_aligned | Перевод | |||
source_aligned/ru | Текст | нить | ||
source_aligned/th | Текст | нить | ||
цель | Тензор | нить | ||
target_aligned | Перевод | |||
target_aligned/ru | Текст | нить | ||
target_aligned/th | Текст | нить |
- Примеры ( tfds.as_dataframe ):
- Цитата :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
драгоценный камень/wiki_lingua_turkish_tr
Описание конфигурации : Wikilingua — это крупномасштабный многоязычный набор данных для оценки межъязыковых систем абстрактного обобщения.
Размер загрузки :
6.73 MiB
Размер набора данных :
30.75 MiB
.Автоматическое кэширование ( документация ): Да
Сплиты :
Расколоть | Примеры |
---|---|
'test' | 900 |
'train' | 3148 |
'validation' | 449 |
- Структура функции :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'tr': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'tr': Text(shape=(), dtype=string),
}),
})
- Документация по функциям :
Особенность | Учебный класс | Форма | Dтип | Описание |
---|---|---|---|---|
ОсобенностиDict | ||||
gem_id | Тензор | нить | ||
gem_parent_id | Тензор | нить | ||
использованная литература | Последовательность (тензор) | (Никто,) | нить | |
источник | Тензор | нить | ||
source_aligned | Перевод | |||
source_aligned/ru | Текст | нить | ||
source_aligned/tr | Текст | нить | ||
цель | Тензор | нить | ||
target_aligned | Перевод | |||
target_aligned/ru | Текст | нить | ||
target_aligned/tr | Текст | нить |
- Примеры ( tfds.as_dataframe ):
- Цитата :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
жемчужина/wiki_lingua_vietnamese_vi
Описание конфигурации : Wikilingua — это крупномасштабный многоязычный набор данных для оценки межъязыковых систем абстрактного обобщения.
Размер загрузки :
36.27 MiB
Размер набора данных :
179.77 MiB
.Автоматическое кэширование ( документация ): Да
Сплиты :
Расколоть | Примеры |
---|---|
'test' | 3917 |
'train' | 13 707 |
'validation' | 1957 |
- Структура функции :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'vi': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'vi': Text(shape=(), dtype=string),
}),
})
- Документация по функциям :
Особенность | Учебный класс | Форма | Dтип | Описание |
---|---|---|---|---|
ОсобенностиDict | ||||
gem_id | Тензор | нить | ||
gem_parent_id | Тензор | нить | ||
использованная литература | Последовательность (тензор) | (Никто,) | нить | |
источник | Тензор | нить | ||
source_aligned | Перевод | |||
source_aligned/ru | Текст | нить | ||
source_aligned/ви | Текст | нить | ||
цель | Тензор | нить | ||
target_aligned | Перевод | |||
target_aligned/ru | Текст | нить | ||
target_aligned/vi | Текст | нить |
- Примеры ( tfds.as_dataframe ):
- Цитата :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."