gemma

  • Descrizione :

GEM è un ambiente di riferimento per la generazione del linguaggio naturale con un focus sulla sua valutazione, sia attraverso annotazioni umane che metriche automatizzate.

GEM mira a: (1) misurare i progressi NLG attraverso 13 set di dati che coprono molte attività e lingue NLG. (2) fornire un'analisi approfondita dei dati e dei modelli presentati tramite dichiarazioni di dati e insiemi di sfide. (3) sviluppare standard per la valutazione del testo generato utilizzando metriche sia automatizzate che umane.

Ulteriori informazioni sono disponibili su https://gem-benchmark.com .

gem/common_gen (configurazione predefinita)

  • Descrizione della configurazione : CommonGen è un'attività di generazione di testo vincolata, associata a un set di dati di benchmark, per testare esplicitamente le macchine per la capacità di ragionamento generativo di senso comune. Dato un insieme di concetti comuni; il compito è generare una frase coerente che descriva uno scenario quotidiano utilizzando questi concetti.

  • Dimensione del download : 1.84 MiB

  • Dimensione del set di dati: 16.84 MiB

  • Auto-cache ( documentazione ): Sì

  • Divisioni :

Diviso Esempi
'challenge_test_scramble' 500
'challenge_train_sample' 500
'challenge_validation_sample' 500
'test' 1.497
'train' 67.389
'validation' 993
  • Struttura delle caratteristiche :
FeaturesDict({
    'concept_set_id': int32,
    'concepts': Sequence(string),
    'gem_id': string,
    'gem_parent_id': string,
    'references': Sequence(string),
    'target': string,
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
concept_set_id Tensore int32
concetti Sequenza (tensore) (Nessuno,) corda
gem_id Tensore corda
gem_parent_id Tensore corda
Riferimenti Sequenza (tensore) (Nessuno,) corda
obbiettivo Tensore corda
  • Citazione :
@inproceedings{lin2020commongen,
  title = "CommonGen: A Constrained Text Generation Challenge for Generative Commonsense Reasoning",
  author = "Lin, Bill Yuchen  and
    Zhou, Wangchunshu  and
    Shen, Ming  and
    Zhou, Pei  and
    Bhagavatula, Chandra  and
    Choi, Yejin  and
    Ren, Xiang",
  booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
  month = nov,
  year = "2020",
  address = "Online",
  publisher = "Association for Computational Linguistics",
  url = "https://www.aclweb.org/anthology/2020.findings-emnlp.165",
  pages = "1823--1840",
}
@article{gehrmann2021gem,
  author    = {Sebastian Gehrmann and
               Tosin P. Adewumi and
               Karmanya Aggarwal and
               Pawan Sasanka Ammanamanchi and
               Aremu Anuoluwapo and
               Antoine Bosselut and
               Khyathi Raghavi Chandu and
               Miruna{-}Adriana Clinciu and
               Dipanjan Das and
               Kaustubh D. Dhole and
               Wanyu Du and
               Esin Durmus and
               Ondrej Dusek and
               Chris Emezue and
               Varun Gangal and
               Cristina Garbacea and
               Tatsunori Hashimoto and
               Yufang Hou and
               Yacine Jernite and
               Harsh Jhamtani and
               Yangfeng Ji and
               Shailza Jolly and
               Dhruv Kumar and
               Faisal Ladhak and
               Aman Madaan and
               Mounica Maddela and
               Khyati Mahajan and
               Saad Mahamood and
               Bodhisattwa Prasad Majumder and
               Pedro Henrique Martins and
               Angelina McMillan{-}Major and
               Simon Mille and
               Emiel van Miltenburg and
               Moin Nadeem and
               Shashi Narayan and
               Vitaly Nikolaev and
               Rubungo Andre Niyongabo and
               Salomey Osei and
               Ankur P. Parikh and
               Laura Perez{-}Beltrachini and
               Niranjan Ramesh Rao and
               Vikas Raunak and
               Juan Diego Rodriguez and
               Sashank Santhanam and
               Jo{\~{a} }o Sedoc and
               Thibault Sellam and
               Samira Shaikh and
               Anastasia Shimorina and
               Marco Antonio Sobrevilla Cabezudo and
               Hendrik Strobelt and
               Nishant Subramani and
               Wei Xu and
               Diyi Yang and
               Akhila Yerukola and
               Jiawei Zhou},
  title     = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
               Metrics},
  journal   = {CoRR},
  volume    = {abs/2102.01672},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.01672},
  archivePrefix = {arXiv},
  eprint    = {2102.01672}
}

Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."

gem/cs_ristoranti

  • Descrizione della configurazione : l'attività genera risposte nel contesto di un (ipotetico) sistema di dialogo che fornisce informazioni sui ristoranti. L'input è un tipo di intento di base/atto di dialogo e un elenco di slot (attributi) e i relativi valori. L'output è una frase in linguaggio naturale.

  • Dimensione del download : 1.46 MiB

  • Dimensione del set di dati: 2.71 MiB

  • Auto-cache ( documentazione ): Sì

  • Divisioni :

Diviso Esempi
'challenge_test_scramble' 500
'challenge_train_sample' 500
'challenge_validation_sample' 500
'test' 842
'train' 3.569
'validation' 781
  • Struttura delle caratteristiche :
FeaturesDict({
    'dialog_act': string,
    'dialog_act_delexicalized': string,
    'gem_id': string,
    'gem_parent_id': string,
    'references': Sequence(string),
    'target': string,
    'target_delexicalized': string,
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
dialog_act Tensore corda
dialog_act_delexicalized Tensore corda
gem_id Tensore corda
gem_parent_id Tensore corda
Riferimenti Sequenza (tensore) (Nessuno,) corda
obbiettivo Tensore corda
target_delexicalized Tensore corda
  • Citazione :
@inproceedings{cs_restaurants,
  address = {Tokyo, Japan},
  title = {Neural {Generation} for {Czech}: {Data} and {Baselines} },
  shorttitle = {Neural {Generation} for {Czech} },
  url = {https://www.aclweb.org/anthology/W19-8670/},
  urldate = {2019-10-18},
  booktitle = {Proceedings of the 12th {International} {Conference} on {Natural} {Language} {Generation} ({INLG} 2019)},
  author = {Dušek, Ondřej and Jurčíček, Filip},
  month = oct,
  year = {2019},
  pages = {563--574}
}
@article{gehrmann2021gem,
  author    = {Sebastian Gehrmann and
               Tosin P. Adewumi and
               Karmanya Aggarwal and
               Pawan Sasanka Ammanamanchi and
               Aremu Anuoluwapo and
               Antoine Bosselut and
               Khyathi Raghavi Chandu and
               Miruna{-}Adriana Clinciu and
               Dipanjan Das and
               Kaustubh D. Dhole and
               Wanyu Du and
               Esin Durmus and
               Ondrej Dusek and
               Chris Emezue and
               Varun Gangal and
               Cristina Garbacea and
               Tatsunori Hashimoto and
               Yufang Hou and
               Yacine Jernite and
               Harsh Jhamtani and
               Yangfeng Ji and
               Shailza Jolly and
               Dhruv Kumar and
               Faisal Ladhak and
               Aman Madaan and
               Mounica Maddela and
               Khyati Mahajan and
               Saad Mahamood and
               Bodhisattwa Prasad Majumder and
               Pedro Henrique Martins and
               Angelina McMillan{-}Major and
               Simon Mille and
               Emiel van Miltenburg and
               Moin Nadeem and
               Shashi Narayan and
               Vitaly Nikolaev and
               Rubungo Andre Niyongabo and
               Salomey Osei and
               Ankur P. Parikh and
               Laura Perez{-}Beltrachini and
               Niranjan Ramesh Rao and
               Vikas Raunak and
               Juan Diego Rodriguez and
               Sashank Santhanam and
               Jo{\~{a} }o Sedoc and
               Thibault Sellam and
               Samira Shaikh and
               Anastasia Shimorina and
               Marco Antonio Sobrevilla Cabezudo and
               Hendrik Strobelt and
               Nishant Subramani and
               Wei Xu and
               Diyi Yang and
               Akhila Yerukola and
               Jiawei Zhou},
  title     = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
               Metrics},
  journal   = {CoRR},
  volume    = {abs/2102.01672},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.01672},
  archivePrefix = {arXiv},
  eprint    = {2102.01672}
}

Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."

gemma/dardo

  • Descrizione della configurazione : DART è un corpus di generazione da record DAta a testo strutturato a dominio aperto di grandi dimensioni con annotazioni di frasi di alta qualità con ogni input costituito da un insieme di triple di relazioni di entità che seguono un'ontologia strutturata ad albero.

  • Dimensione del download : 28.01 MiB

  • Dimensione del set di dati: 33.78 MiB

  • Auto-cache ( documentazione ): Sì

  • Divisioni :

Diviso Esempi
'test' 6.959
'train' 62.659
'validation' 2.768
  • Struttura delle caratteristiche :
FeaturesDict({
    'dart_id': int32,
    'gem_id': string,
    'gem_parent_id': string,
    'references': Sequence(string),
    'subtree_was_extended': bool,
    'target': string,
    'target_sources': Sequence(string),
    'tripleset': Sequence(string),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
dart_id Tensore int32
gem_id Tensore corda
gem_parent_id Tensore corda
Riferimenti Sequenza (tensore) (Nessuno,) corda
subtree_was_extended Tensore bool
obbiettivo Tensore corda
target_sources Sequenza (tensore) (Nessuno,) corda
tripletta Sequenza (tensore) (Nessuno,) corda
  • Citazione :
@article{radev2020dart,
  title=Dart: Open-domain structured data record to text generation,
  author={Radev, Dragomir and Zhang, Rui and Rau, Amrit and Sivaprasad, Abhinand and Hsieh, Chiachun and Rajani, Nazneen Fatema and Tang, Xiangru and Vyas, Aadit and Verma, Neha and Krishna, Pranav and others},
  journal={arXiv preprint arXiv:2007.02871},
  year={2020}
}
}
@article{gehrmann2021gem,
  author    = {Sebastian Gehrmann and
               Tosin P. Adewumi and
               Karmanya Aggarwal and
               Pawan Sasanka Ammanamanchi and
               Aremu Anuoluwapo and
               Antoine Bosselut and
               Khyathi Raghavi Chandu and
               Miruna{-}Adriana Clinciu and
               Dipanjan Das and
               Kaustubh D. Dhole and
               Wanyu Du and
               Esin Durmus and
               Ondrej Dusek and
               Chris Emezue and
               Varun Gangal and
               Cristina Garbacea and
               Tatsunori Hashimoto and
               Yufang Hou and
               Yacine Jernite and
               Harsh Jhamtani and
               Yangfeng Ji and
               Shailza Jolly and
               Dhruv Kumar and
               Faisal Ladhak and
               Aman Madaan and
               Mounica Maddela and
               Khyati Mahajan and
               Saad Mahamood and
               Bodhisattwa Prasad Majumder and
               Pedro Henrique Martins and
               Angelina McMillan{-}Major and
               Simon Mille and
               Emiel van Miltenburg and
               Moin Nadeem and
               Shashi Narayan and
               Vitaly Nikolaev and
               Rubungo Andre Niyongabo and
               Salomey Osei and
               Ankur P. Parikh and
               Laura Perez{-}Beltrachini and
               Niranjan Ramesh Rao and
               Vikas Raunak and
               Juan Diego Rodriguez and
               Sashank Santhanam and
               Jo{\~{a} }o Sedoc and
               Thibault Sellam and
               Samira Shaikh and
               Anastasia Shimorina and
               Marco Antonio Sobrevilla Cabezudo and
               Hendrik Strobelt and
               Nishant Subramani and
               Wei Xu and
               Diyi Yang and
               Akhila Yerukola and
               Jiawei Zhou},
  title     = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
               Metrics},
  journal   = {CoRR},
  volume    = {abs/2102.01672},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.01672},
  archivePrefix = {arXiv},
  eprint    = {2102.01672}
}

Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."

gem/e2e_nlg

  • Descrizione della configurazione : il set di dati E2E è progettato per un'attività di conversione dei dati in un dominio limitato: generazione di descrizioni/consigli di ristoranti basati su un massimo di 8 attributi diversi (nome, area, fascia di prezzo, ecc.)

  • Dimensione del download : 13.99 MiB

  • Dimensione del set di dati: 16.92 MiB

  • Auto-cache ( documentazione ): Sì

  • Divisioni :

Diviso Esempi
'challenge_test_scramble' 500
'challenge_train_sample' 500
'challenge_validation_sample' 500
'test' 4.693
'train' 33.525
'validation' 4.299
  • Struttura delle caratteristiche :
FeaturesDict({
    'gem_id': string,
    'gem_parent_id': string,
    'meaning_representation': string,
    'references': Sequence(string),
    'target': string,
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
gem_id Tensore corda
gem_parent_id Tensore corda
significato_rappresentazione Tensore corda
Riferimenti Sequenza (tensore) (Nessuno,) corda
obbiettivo Tensore corda
  • Citazione :
@inproceedings{e2e_cleaned,
  address = {Tokyo, Japan},
  title = {Semantic {Noise} {Matters} for {Neural} {Natural} {Language} {Generation} },
  url = {https://www.aclweb.org/anthology/W19-8652/},
  booktitle = {Proceedings of the 12th {International} {Conference} on {Natural} {Language} {Generation} ({INLG} 2019)},
  author = {Dušek, Ondřej and Howcroft, David M and Rieser, Verena},
  year = {2019},
  pages = {421--426},
}
@article{gehrmann2021gem,
  author    = {Sebastian Gehrmann and
               Tosin P. Adewumi and
               Karmanya Aggarwal and
               Pawan Sasanka Ammanamanchi and
               Aremu Anuoluwapo and
               Antoine Bosselut and
               Khyathi Raghavi Chandu and
               Miruna{-}Adriana Clinciu and
               Dipanjan Das and
               Kaustubh D. Dhole and
               Wanyu Du and
               Esin Durmus and
               Ondrej Dusek and
               Chris Emezue and
               Varun Gangal and
               Cristina Garbacea and
               Tatsunori Hashimoto and
               Yufang Hou and
               Yacine Jernite and
               Harsh Jhamtani and
               Yangfeng Ji and
               Shailza Jolly and
               Dhruv Kumar and
               Faisal Ladhak and
               Aman Madaan and
               Mounica Maddela and
               Khyati Mahajan and
               Saad Mahamood and
               Bodhisattwa Prasad Majumder and
               Pedro Henrique Martins and
               Angelina McMillan{-}Major and
               Simon Mille and
               Emiel van Miltenburg and
               Moin Nadeem and
               Shashi Narayan and
               Vitaly Nikolaev and
               Rubungo Andre Niyongabo and
               Salomey Osei and
               Ankur P. Parikh and
               Laura Perez{-}Beltrachini and
               Niranjan Ramesh Rao and
               Vikas Raunak and
               Juan Diego Rodriguez and
               Sashank Santhanam and
               Jo{\~{a} }o Sedoc and
               Thibault Sellam and
               Samira Shaikh and
               Anastasia Shimorina and
               Marco Antonio Sobrevilla Cabezudo and
               Hendrik Strobelt and
               Nishant Subramani and
               Wei Xu and
               Diyi Yang and
               Akhila Yerukola and
               Jiawei Zhou},
  title     = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
               Metrics},
  journal   = {CoRR},
  volume    = {abs/2102.01672},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.01672},
  archivePrefix = {arXiv},
  eprint    = {2102.01672}
}

Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."

gem/mlsum_de

  • Descrizione della configurazione : MLSum è un set di dati di riepilogo multilingue su larga scala. È costruito da punti vendita di notizie online, questa divisione si concentra sul tedesco.

  • Dimensione del download : 345.98 MiB

  • Dimensione del set di dati: 963.60 MiB

  • Cache automatica ( documentazione ): No

  • Divisioni :

Diviso Esempi
'challenge_test_covid' 5.058
'challenge_train_sample' 500
'challenge_validation_sample' 500
'test' 10.695
'train' 220.748
'validation' 11.392
  • Struttura delle caratteristiche :
FeaturesDict({
    'date': string,
    'gem_id': string,
    'gem_parent_id': string,
    'references': Sequence(string),
    'target': string,
    'text': string,
    'title': string,
    'topic': string,
    'url': string,
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
Data Tensore corda
gem_id Tensore corda
gem_parent_id Tensore corda
Riferimenti Sequenza (tensore) (Nessuno,) corda
obbiettivo Tensore corda
testo Tensore corda
titolo Tensore corda
argomento Tensore corda
URL Tensore corda
  • Citazione :
@inproceedings{scialom-etal-2020-mlsum,
    title = "{MLSUM}: The Multilingual Summarization Corpus",
    author = {Scialom, Thomas  and Dray, Paul-Alexis  and Lamprier, Sylvain  and Piwowarski, Benjamin  and Staiano, Jacopo},
    booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
    year = {2020}
}
@article{gehrmann2021gem,
  author    = {Sebastian Gehrmann and
               Tosin P. Adewumi and
               Karmanya Aggarwal and
               Pawan Sasanka Ammanamanchi and
               Aremu Anuoluwapo and
               Antoine Bosselut and
               Khyathi Raghavi Chandu and
               Miruna{-}Adriana Clinciu and
               Dipanjan Das and
               Kaustubh D. Dhole and
               Wanyu Du and
               Esin Durmus and
               Ondrej Dusek and
               Chris Emezue and
               Varun Gangal and
               Cristina Garbacea and
               Tatsunori Hashimoto and
               Yufang Hou and
               Yacine Jernite and
               Harsh Jhamtani and
               Yangfeng Ji and
               Shailza Jolly and
               Dhruv Kumar and
               Faisal Ladhak and
               Aman Madaan and
               Mounica Maddela and
               Khyati Mahajan and
               Saad Mahamood and
               Bodhisattwa Prasad Majumder and
               Pedro Henrique Martins and
               Angelina McMillan{-}Major and
               Simon Mille and
               Emiel van Miltenburg and
               Moin Nadeem and
               Shashi Narayan and
               Vitaly Nikolaev and
               Rubungo Andre Niyongabo and
               Salomey Osei and
               Ankur P. Parikh and
               Laura Perez{-}Beltrachini and
               Niranjan Ramesh Rao and
               Vikas Raunak and
               Juan Diego Rodriguez and
               Sashank Santhanam and
               Jo{\~{a} }o Sedoc and
               Thibault Sellam and
               Samira Shaikh and
               Anastasia Shimorina and
               Marco Antonio Sobrevilla Cabezudo and
               Hendrik Strobelt and
               Nishant Subramani and
               Wei Xu and
               Diyi Yang and
               Akhila Yerukola and
               Jiawei Zhou},
  title     = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
               Metrics},
  journal   = {CoRR},
  volume    = {abs/2102.01672},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.01672},
  archivePrefix = {arXiv},
  eprint    = {2102.01672}
}

Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."

gem/mlsum_es

  • Descrizione della configurazione : MLSum è un set di dati di riepilogo multilingue su larga scala. È costruito da punti vendita di notizie online, questa divisione si concentra sullo spagnolo.

  • Dimensione del download : 501.27 MiB

  • Dimensione del set di dati : 1.29 GiB

  • Cache automatica ( documentazione ): No

  • Divisioni :

Diviso Esempi
'challenge_test_covid' 1.938
'challenge_train_sample' 500
'challenge_validation_sample' 500
'test' 13.366
'train' 259.888
'validation' 9.977
  • Struttura delle caratteristiche :
FeaturesDict({
    'date': string,
    'gem_id': string,
    'gem_parent_id': string,
    'references': Sequence(string),
    'target': string,
    'text': string,
    'title': string,
    'topic': string,
    'url': string,
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
Data Tensore corda
gem_id Tensore corda
gem_parent_id Tensore corda
Riferimenti Sequenza (tensore) (Nessuno,) corda
obbiettivo Tensore corda
testo Tensore corda
titolo Tensore corda
argomento Tensore corda
URL Tensore corda
  • Citazione :
@inproceedings{scialom-etal-2020-mlsum,
    title = "{MLSUM}: The Multilingual Summarization Corpus",
    author = {Scialom, Thomas  and Dray, Paul-Alexis  and Lamprier, Sylvain  and Piwowarski, Benjamin  and Staiano, Jacopo},
    booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
    year = {2020}
}
@article{gehrmann2021gem,
  author    = {Sebastian Gehrmann and
               Tosin P. Adewumi and
               Karmanya Aggarwal and
               Pawan Sasanka Ammanamanchi and
               Aremu Anuoluwapo and
               Antoine Bosselut and
               Khyathi Raghavi Chandu and
               Miruna{-}Adriana Clinciu and
               Dipanjan Das and
               Kaustubh D. Dhole and
               Wanyu Du and
               Esin Durmus and
               Ondrej Dusek and
               Chris Emezue and
               Varun Gangal and
               Cristina Garbacea and
               Tatsunori Hashimoto and
               Yufang Hou and
               Yacine Jernite and
               Harsh Jhamtani and
               Yangfeng Ji and
               Shailza Jolly and
               Dhruv Kumar and
               Faisal Ladhak and
               Aman Madaan and
               Mounica Maddela and
               Khyati Mahajan and
               Saad Mahamood and
               Bodhisattwa Prasad Majumder and
               Pedro Henrique Martins and
               Angelina McMillan{-}Major and
               Simon Mille and
               Emiel van Miltenburg and
               Moin Nadeem and
               Shashi Narayan and
               Vitaly Nikolaev and
               Rubungo Andre Niyongabo and
               Salomey Osei and
               Ankur P. Parikh and
               Laura Perez{-}Beltrachini and
               Niranjan Ramesh Rao and
               Vikas Raunak and
               Juan Diego Rodriguez and
               Sashank Santhanam and
               Jo{\~{a} }o Sedoc and
               Thibault Sellam and
               Samira Shaikh and
               Anastasia Shimorina and
               Marco Antonio Sobrevilla Cabezudo and
               Hendrik Strobelt and
               Nishant Subramani and
               Wei Xu and
               Diyi Yang and
               Akhila Yerukola and
               Jiawei Zhou},
  title     = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
               Metrics},
  journal   = {CoRR},
  volume    = {abs/2102.01672},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.01672},
  archivePrefix = {arXiv},
  eprint    = {2102.01672}
}

Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."

gem/schema_guided_dialog

  • Descrizione della configurazione : il set di dati Schema-Guided Dialogue (SGD) contiene 18.000 dialoghi orientati alle attività multidominio tra un essere umano e un assistente virtuale, che copre 17 domini che vanno da banche ed eventi a media, calendario, viaggi e meteo.

  • Dimensione del download : 17.00 MiB

  • Dimensione del set di dati: 201.19 MiB

  • Auto-cache ( documentazione ): Sì (challenge_test_backtranslation, challenge_test_bfp02, challenge_test_bfp05, challenge_test_nopunc, challenge_test_scramble, challenge_train_sample, challenge_validation_sample, test, validation), Solo quando shuffle_files=False (train)

  • Divisioni :

Diviso Esempi
'challenge_test_backtranslation' 500
'challenge_test_bfp02' 500
'challenge_test_bfp05' 500
'challenge_test_nopunc' 500
'challenge_test_scramble' 500
'challenge_train_sample' 500
'challenge_validation_sample' 500
'test' 10.000
'train' 164.982
'validation' 10.000
  • Struttura delle caratteristiche :
FeaturesDict({
    'context': Sequence(string),
    'dialog_acts': Sequence({
        'act': ClassLabel(shape=(), dtype=int64, num_classes=18),
        'slot': string,
        'values': Sequence(string),
    }),
    'dialog_id': string,
    'gem_id': string,
    'gem_parent_id': string,
    'prompt': string,
    'references': Sequence(string),
    'service': string,
    'target': string,
    'turn_id': int32,
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
contesto Sequenza (tensore) (Nessuno,) corda
dialog_acts Sequenza
dialog_acts/act ClassLabel int64
dialog_acts/slot Tensore corda
dialog_acts/values Sequenza (tensore) (Nessuno,) corda
dialog_id Tensore corda
gem_id Tensore corda
gem_parent_id Tensore corda
richiesta Tensore corda
Riferimenti Sequenza (tensore) (Nessuno,) corda
servizio Tensore corda
obbiettivo Tensore corda
turn_id Tensore int32
  • Citazione :
@article{rastogi2019towards,
  title={Towards Scalable Multi-domain Conversational Agents: The Schema-Guided Dialogue Dataset},
  author={Rastogi, Abhinav and Zang, Xiaoxue and Sunkara, Srinivas and Gupta, Raghav and Khaitan, Pranav},
  journal={arXiv preprint arXiv:1909.05855},
  year={2019}
}
@article{gehrmann2021gem,
  author    = {Sebastian Gehrmann and
               Tosin P. Adewumi and
               Karmanya Aggarwal and
               Pawan Sasanka Ammanamanchi and
               Aremu Anuoluwapo and
               Antoine Bosselut and
               Khyathi Raghavi Chandu and
               Miruna{-}Adriana Clinciu and
               Dipanjan Das and
               Kaustubh D. Dhole and
               Wanyu Du and
               Esin Durmus and
               Ondrej Dusek and
               Chris Emezue and
               Varun Gangal and
               Cristina Garbacea and
               Tatsunori Hashimoto and
               Yufang Hou and
               Yacine Jernite and
               Harsh Jhamtani and
               Yangfeng Ji and
               Shailza Jolly and
               Dhruv Kumar and
               Faisal Ladhak and
               Aman Madaan and
               Mounica Maddela and
               Khyati Mahajan and
               Saad Mahamood and
               Bodhisattwa Prasad Majumder and
               Pedro Henrique Martins and
               Angelina McMillan{-}Major and
               Simon Mille and
               Emiel van Miltenburg and
               Moin Nadeem and
               Shashi Narayan and
               Vitaly Nikolaev and
               Rubungo Andre Niyongabo and
               Salomey Osei and
               Ankur P. Parikh and
               Laura Perez{-}Beltrachini and
               Niranjan Ramesh Rao and
               Vikas Raunak and
               Juan Diego Rodriguez and
               Sashank Santhanam and
               Jo{\~{a} }o Sedoc and
               Thibault Sellam and
               Samira Shaikh and
               Anastasia Shimorina and
               Marco Antonio Sobrevilla Cabezudo and
               Hendrik Strobelt and
               Nishant Subramani and
               Wei Xu and
               Diyi Yang and
               Akhila Yerukola and
               Jiawei Zhou},
  title     = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
               Metrics},
  journal   = {CoRR},
  volume    = {abs/2102.01672},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.01672},
  archivePrefix = {arXiv},
  eprint    = {2102.01672}
}

Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."

gemma/totto

  • Descrizione della configurazione : ToTTo è un'attività NLG da tabella a testo. Il compito è il seguente: data una tabella di Wikipedia con nomi di righe, nomi di colonne e celle di tabella, con un sottoinsieme di celle evidenziato, generare una descrizione in linguaggio naturale per la parte evidenziata della tabella.

  • Dimensione del download : 180.75 MiB

  • Dimensione del set di dati: 645.86 MiB

  • Cache automatica ( documentazione ): No

  • Divisioni :

Diviso Esempi
'challenge_test_scramble' 500
'challenge_train_sample' 500
'challenge_validation_sample' 500
'test' 7.700
'train' 121,153
'validation' 7.700
  • Struttura delle caratteristiche :
FeaturesDict({
    'example_id': string,
    'gem_id': string,
    'gem_parent_id': string,
    'highlighted_cells': Sequence(Sequence(int32)),
    'overlap_subset': string,
    'references': Sequence(string),
    'sentence_annotations': Sequence({
        'final_sentence': string,
        'original_sentence': string,
        'sentence_after_ambiguity': string,
        'sentence_after_deletion': string,
    }),
    'table': Sequence(Sequence({
        'column_span': int32,
        'is_header': bool,
        'row_span': int32,
        'value': string,
    })),
    'table_page_title': string,
    'table_section_text': string,
    'table_section_title': string,
    'table_webpage_url': string,
    'target': string,
    'totto_id': int32,
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
esempio_id Tensore corda
gem_id Tensore corda
gem_parent_id Tensore corda
celle_evidenziate Sequenza(Sequenza(Tensore)) (Nessuno, nessuno) int32
sovrapposizione_sottoinsieme Tensore corda
Riferimenti Sequenza (tensore) (Nessuno,) corda
frase_annotazioni Sequenza
frase_annotazioni/frase_finale Tensore corda
frase_annotazioni/frase_originale Tensore corda
frase_annotazioni/frase_dopo_ambiguità Tensore corda
frase_annotazioni/frase_dopo_cancellazione Tensore corda
tavolo Sequenza
tabella/colonna_span Tensore int32
table/è_intestazione Tensore bool
table/row_span Tensore int32
tabella/valore Tensore corda
table_page_title Tensore corda
tabella_sezione_testo Tensore corda
table_section_title Tensore corda
table_webpage_url Tensore corda
obbiettivo Tensore corda
totto_id Tensore int32
  • Citazione :
@inproceedings{parikh2020totto,
  title=ToTTo: A Controlled Table-To-Text Generation Dataset,
  author={Parikh, Ankur and Wang, Xuezhi and Gehrmann, Sebastian and Faruqui, Manaal and Dhingra, Bhuwan and Yang, Diyi and Das, Dipanjan},
  booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
  pages={1173--1186},
  year={2020}
}
@article{gehrmann2021gem,
  author    = {Sebastian Gehrmann and
               Tosin P. Adewumi and
               Karmanya Aggarwal and
               Pawan Sasanka Ammanamanchi and
               Aremu Anuoluwapo and
               Antoine Bosselut and
               Khyathi Raghavi Chandu and
               Miruna{-}Adriana Clinciu and
               Dipanjan Das and
               Kaustubh D. Dhole and
               Wanyu Du and
               Esin Durmus and
               Ondrej Dusek and
               Chris Emezue and
               Varun Gangal and
               Cristina Garbacea and
               Tatsunori Hashimoto and
               Yufang Hou and
               Yacine Jernite and
               Harsh Jhamtani and
               Yangfeng Ji and
               Shailza Jolly and
               Dhruv Kumar and
               Faisal Ladhak and
               Aman Madaan and
               Mounica Maddela and
               Khyati Mahajan and
               Saad Mahamood and
               Bodhisattwa Prasad Majumder and
               Pedro Henrique Martins and
               Angelina McMillan{-}Major and
               Simon Mille and
               Emiel van Miltenburg and
               Moin Nadeem and
               Shashi Narayan and
               Vitaly Nikolaev and
               Rubungo Andre Niyongabo and
               Salomey Osei and
               Ankur P. Parikh and
               Laura Perez{-}Beltrachini and
               Niranjan Ramesh Rao and
               Vikas Raunak and
               Juan Diego Rodriguez and
               Sashank Santhanam and
               Jo{\~{a} }o Sedoc and
               Thibault Sellam and
               Samira Shaikh and
               Anastasia Shimorina and
               Marco Antonio Sobrevilla Cabezudo and
               Hendrik Strobelt and
               Nishant Subramani and
               Wei Xu and
               Diyi Yang and
               Akhila Yerukola and
               Jiawei Zhou},
  title     = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
               Metrics},
  journal   = {CoRR},
  volume    = {abs/2102.01672},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.01672},
  archivePrefix = {arXiv},
  eprint    = {2102.01672}
}

Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."

gem/web_nlg_it

  • Descrizione della configurazione : WebNLG è un set di dati bilingue (inglese, russo) di triple set parallele di DBpedia e brevi testi che coprono circa 450 diverse proprietà di DBpedia. I dati WebNLG sono stati originariamente creati per promuovere lo sviluppo di verbalizzatori RDF in grado di generare testi brevi e di gestire la micro-pianificazione.

  • Dimensione del download : 12.57 MiB

  • Dimensione del set di dati: 19.91 MiB

  • Auto-cache ( documentazione ): Sì

  • Divisioni :

Diviso Esempi
'challenge_test_numbers' 500
'challenge_test_scramble' 500
'challenge_train_sample' 502
'challenge_validation_sample' 499
'test' 1.779
'train' 35.426
'validation' 1.667
  • Struttura delle caratteristiche :
FeaturesDict({
    'category': string,
    'gem_id': string,
    'gem_parent_id': string,
    'input': Sequence(string),
    'references': Sequence(string),
    'target': string,
    'webnlg_id': string,
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
categoria Tensore corda
gem_id Tensore corda
gem_parent_id Tensore corda
ingresso Sequenza (tensore) (Nessuno,) corda
Riferimenti Sequenza (tensore) (Nessuno,) corda
obbiettivo Tensore corda
webnlg_id Tensore corda
  • Citazione :
@inproceedings{gardent2017creating,
  author = "Gardent, Claire
    and Shimorina, Anastasia
    and Narayan, Shashi
    and Perez-Beltrachini, Laura",
  title = "Creating Training Corpora for NLG Micro-Planners",
  booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
  year = "2017",
  publisher = "Association for Computational Linguistics",
  pages = "179--188",
  location = "Vancouver, Canada",
  doi = "10.18653/v1/P17-1017",
  url = "http://www.aclweb.org/anthology/P17-1017"
}
@article{gehrmann2021gem,
  author    = {Sebastian Gehrmann and
               Tosin P. Adewumi and
               Karmanya Aggarwal and
               Pawan Sasanka Ammanamanchi and
               Aremu Anuoluwapo and
               Antoine Bosselut and
               Khyathi Raghavi Chandu and
               Miruna{-}Adriana Clinciu and
               Dipanjan Das and
               Kaustubh D. Dhole and
               Wanyu Du and
               Esin Durmus and
               Ondrej Dusek and
               Chris Emezue and
               Varun Gangal and
               Cristina Garbacea and
               Tatsunori Hashimoto and
               Yufang Hou and
               Yacine Jernite and
               Harsh Jhamtani and
               Yangfeng Ji and
               Shailza Jolly and
               Dhruv Kumar and
               Faisal Ladhak and
               Aman Madaan and
               Mounica Maddela and
               Khyati Mahajan and
               Saad Mahamood and
               Bodhisattwa Prasad Majumder and
               Pedro Henrique Martins and
               Angelina McMillan{-}Major and
               Simon Mille and
               Emiel van Miltenburg and
               Moin Nadeem and
               Shashi Narayan and
               Vitaly Nikolaev and
               Rubungo Andre Niyongabo and
               Salomey Osei and
               Ankur P. Parikh and
               Laura Perez{-}Beltrachini and
               Niranjan Ramesh Rao and
               Vikas Raunak and
               Juan Diego Rodriguez and
               Sashank Santhanam and
               Jo{\~{a} }o Sedoc and
               Thibault Sellam and
               Samira Shaikh and
               Anastasia Shimorina and
               Marco Antonio Sobrevilla Cabezudo and
               Hendrik Strobelt and
               Nishant Subramani and
               Wei Xu and
               Diyi Yang and
               Akhila Yerukola and
               Jiawei Zhou},
  title     = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
               Metrics},
  journal   = {CoRR},
  volume    = {abs/2102.01672},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.01672},
  archivePrefix = {arXiv},
  eprint    = {2102.01672}
}

Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."

gem/web_nlg_ru

  • Descrizione della configurazione : WebNLG è un set di dati bilingue (inglese, russo) di triple set parallele di DBpedia e brevi testi che coprono circa 450 diverse proprietà di DBpedia. I dati WebNLG sono stati originariamente creati per promuovere lo sviluppo di verbalizzatori RDF in grado di generare testi brevi e di gestire la micro-pianificazione.

  • Dimensione del download : 7.49 MiB

  • Dimensione del set di dati : 11.30 MiB

  • Auto-cache ( documentazione ): Sì

  • Divisioni :

Diviso Esempi
'challenge_test_scramble' 500
'challenge_train_sample' 501
'challenge_validation_sample' 500
'test' 1.102
'train' 14.630
'validation' 790
  • Struttura delle caratteristiche :
FeaturesDict({
    'category': string,
    'gem_id': string,
    'gem_parent_id': string,
    'input': Sequence(string),
    'references': Sequence(string),
    'target': string,
    'webnlg_id': string,
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
categoria Tensore corda
gem_id Tensore corda
gem_parent_id Tensore corda
ingresso Sequenza (tensore) (Nessuno,) corda
Riferimenti Sequenza (tensore) (Nessuno,) corda
obbiettivo Tensore corda
webnlg_id Tensore corda
  • Citazione :
@inproceedings{gardent2017creating,
  author = "Gardent, Claire
    and Shimorina, Anastasia
    and Narayan, Shashi
    and Perez-Beltrachini, Laura",
  title = "Creating Training Corpora for NLG Micro-Planners",
  booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
  year = "2017",
  publisher = "Association for Computational Linguistics",
  pages = "179--188",
  location = "Vancouver, Canada",
  doi = "10.18653/v1/P17-1017",
  url = "http://www.aclweb.org/anthology/P17-1017"
}
@article{gehrmann2021gem,
  author    = {Sebastian Gehrmann and
               Tosin P. Adewumi and
               Karmanya Aggarwal and
               Pawan Sasanka Ammanamanchi and
               Aremu Anuoluwapo and
               Antoine Bosselut and
               Khyathi Raghavi Chandu and
               Miruna{-}Adriana Clinciu and
               Dipanjan Das and
               Kaustubh D. Dhole and
               Wanyu Du and
               Esin Durmus and
               Ondrej Dusek and
               Chris Emezue and
               Varun Gangal and
               Cristina Garbacea and
               Tatsunori Hashimoto and
               Yufang Hou and
               Yacine Jernite and
               Harsh Jhamtani and
               Yangfeng Ji and
               Shailza Jolly and
               Dhruv Kumar and
               Faisal Ladhak and
               Aman Madaan and
               Mounica Maddela and
               Khyati Mahajan and
               Saad Mahamood and
               Bodhisattwa Prasad Majumder and
               Pedro Henrique Martins and
               Angelina McMillan{-}Major and
               Simon Mille and
               Emiel van Miltenburg and
               Moin Nadeem and
               Shashi Narayan and
               Vitaly Nikolaev and
               Rubungo Andre Niyongabo and
               Salomey Osei and
               Ankur P. Parikh and
               Laura Perez{-}Beltrachini and
               Niranjan Ramesh Rao and
               Vikas Raunak and
               Juan Diego Rodriguez and
               Sashank Santhanam and
               Jo{\~{a} }o Sedoc and
               Thibault Sellam and
               Samira Shaikh and
               Anastasia Shimorina and
               Marco Antonio Sobrevilla Cabezudo and
               Hendrik Strobelt and
               Nishant Subramani and
               Wei Xu and
               Diyi Yang and
               Akhila Yerukola and
               Jiawei Zhou},
  title     = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
               Metrics},
  journal   = {CoRR},
  volume    = {abs/2102.01672},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.01672},
  archivePrefix = {arXiv},
  eprint    = {2102.01672}
}

Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."

gemma/wiki_auto_asset_turk

  • Descrizione della configurazione : WikiAuto fornisce una serie di frasi allineate da Wikipedia in inglese e Wikipedia in inglese semplice come risorsa per addestrare i sistemi di semplificazione delle frasi. ASSET e TURK sono set di dati di semplificazione di alta qualità utilizzati per i test.

  • Dimensioni del download : 121.01 MiB

  • Dimensione del set di dati: 202.40 MiB

  • Auto-cached ( documentation ): Yes (challenge_test_asset_backtranslation, challenge_test_asset_bfp02, challenge_test_asset_bfp05, challenge_test_asset_nopunc, challenge_test_turk_backtranslation, challenge_test_turk_bfp02, challenge_test_turk_bfp05, challenge_test_turk_nopunc, challenge_train_sample, challenge_validation_sample, test_asset, test_turk, validation), Only when shuffle_files=False (train)

  • Divisioni :

Diviso Esempi
'challenge_test_asset_backtranslation' 359
'challenge_test_asset_bfp02' 359
'challenge_test_asset_bfp05' 359
'challenge_test_asset_nopunc' 359
'challenge_test_turk_backtranslation' 359
'challenge_test_turk_bfp02' 359
'challenge_test_turk_bfp05' 359
'challenge_test_turk_nopunc' 359
'challenge_train_sample' 500
'challenge_validation_sample' 500
'test_asset' 359
'test_turk' 359
'train' 483.801
'validation' 20.000
  • Struttura delle caratteristiche :
FeaturesDict({
    'gem_id': string,
    'gem_parent_id': string,
    'references': Sequence(string),
    'source': string,
    'target': string,
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
gem_id Tensore corda
gem_parent_id Tensore corda
Riferimenti Sequenza (tensore) (Nessuno,) corda
fonte Tensore corda
obbiettivo Tensore corda
  • Citazione :
@inproceedings{jiang-etal-2020-neural,
    title = "Neural {CRF} Model for Sentence Alignment in Text Simplification",
    author = "Jiang, Chao  and
      Maddela, Mounica  and
      Lan, Wuwei  and
      Zhong, Yang  and
      Xu, Wei",
    booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.acl-main.709",
    doi = "10.18653/v1/2020.acl-main.709",
    pages = "7943--7960",
}
@article{gehrmann2021gem,
  author    = {Sebastian Gehrmann and
               Tosin P. Adewumi and
               Karmanya Aggarwal and
               Pawan Sasanka Ammanamanchi and
               Aremu Anuoluwapo and
               Antoine Bosselut and
               Khyathi Raghavi Chandu and
               Miruna{-}Adriana Clinciu and
               Dipanjan Das and
               Kaustubh D. Dhole and
               Wanyu Du and
               Esin Durmus and
               Ondrej Dusek and
               Chris Emezue and
               Varun Gangal and
               Cristina Garbacea and
               Tatsunori Hashimoto and
               Yufang Hou and
               Yacine Jernite and
               Harsh Jhamtani and
               Yangfeng Ji and
               Shailza Jolly and
               Dhruv Kumar and
               Faisal Ladhak and
               Aman Madaan and
               Mounica Maddela and
               Khyati Mahajan and
               Saad Mahamood and
               Bodhisattwa Prasad Majumder and
               Pedro Henrique Martins and
               Angelina McMillan{-}Major and
               Simon Mille and
               Emiel van Miltenburg and
               Moin Nadeem and
               Shashi Narayan and
               Vitaly Nikolaev and
               Rubungo Andre Niyongabo and
               Salomey Osei and
               Ankur P. Parikh and
               Laura Perez{-}Beltrachini and
               Niranjan Ramesh Rao and
               Vikas Raunak and
               Juan Diego Rodriguez and
               Sashank Santhanam and
               Jo{\~{a} }o Sedoc and
               Thibault Sellam and
               Samira Shaikh and
               Anastasia Shimorina and
               Marco Antonio Sobrevilla Cabezudo and
               Hendrik Strobelt and
               Nishant Subramani and
               Wei Xu and
               Diyi Yang and
               Akhila Yerukola and
               Jiawei Zhou},
  title     = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
               Metrics},
  journal   = {CoRR},
  volume    = {abs/2102.01672},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.01672},
  archivePrefix = {arXiv},
  eprint    = {2102.01672}
}

Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."

gemma/xsum

  • Descrizione della configurazione : il set di dati ha il compito di riepilogo astrattivo nella sua forma estrema, si tratta di riassumere un documento in una singola frase.

  • Dimensione del download : 246.31 MiB

  • Dimensione del set di dati: 78.89 MiB

  • Auto-cache ( documentazione ): Sì

  • Divisioni :

Diviso Esempi
'challenge_test_backtranslation' 500
'challenge_test_bfp_02' 500
'challenge_test_bfp_05' 500
'challenge_test_covid' 401
'challenge_test_nopunc' 500
'challenge_train_sample' 500
'challenge_validation_sample' 500
'test' 1.166
'train' 23.206
'validation' 1.117
  • Struttura delle caratteristiche :
FeaturesDict({
    'document': string,
    'gem_id': string,
    'gem_parent_id': string,
    'references': Sequence(string),
    'target': string,
    'xsum_id': string,
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
documento Tensore corda
gem_id Tensore corda
gem_parent_id Tensore corda
Riferimenti Sequenza (tensore) (Nessuno,) corda
obbiettivo Tensore corda
xsum_id Tensore corda
  • Citazione :
@inproceedings{Narayan2018dont,
  author = "Shashi Narayan and Shay B. Cohen and Mirella Lapata",
  title = "Don't Give Me the Details, Just the Summary! {T}opic-Aware Convolutional Neural Networks for Extreme Summarization",
  booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing ",
  year = "2018",
  address = "Brussels, Belgium",
}
@article{gehrmann2021gem,
  author    = {Sebastian Gehrmann and
               Tosin P. Adewumi and
               Karmanya Aggarwal and
               Pawan Sasanka Ammanamanchi and
               Aremu Anuoluwapo and
               Antoine Bosselut and
               Khyathi Raghavi Chandu and
               Miruna{-}Adriana Clinciu and
               Dipanjan Das and
               Kaustubh D. Dhole and
               Wanyu Du and
               Esin Durmus and
               Ondrej Dusek and
               Chris Emezue and
               Varun Gangal and
               Cristina Garbacea and
               Tatsunori Hashimoto and
               Yufang Hou and
               Yacine Jernite and
               Harsh Jhamtani and
               Yangfeng Ji and
               Shailza Jolly and
               Dhruv Kumar and
               Faisal Ladhak and
               Aman Madaan and
               Mounica Maddela and
               Khyati Mahajan and
               Saad Mahamood and
               Bodhisattwa Prasad Majumder and
               Pedro Henrique Martins and
               Angelina McMillan{-}Major and
               Simon Mille and
               Emiel van Miltenburg and
               Moin Nadeem and
               Shashi Narayan and
               Vitaly Nikolaev and
               Rubungo Andre Niyongabo and
               Salomey Osei and
               Ankur P. Parikh and
               Laura Perez{-}Beltrachini and
               Niranjan Ramesh Rao and
               Vikas Raunak and
               Juan Diego Rodriguez and
               Sashank Santhanam and
               Jo{\~{a} }o Sedoc and
               Thibault Sellam and
               Samira Shaikh and
               Anastasia Shimorina and
               Marco Antonio Sobrevilla Cabezudo and
               Hendrik Strobelt and
               Nishant Subramani and
               Wei Xu and
               Diyi Yang and
               Akhila Yerukola and
               Jiawei Zhou},
  title     = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
               Metrics},
  journal   = {CoRR},
  volume    = {abs/2102.01672},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.01672},
  archivePrefix = {arXiv},
  eprint    = {2102.01672}
}

Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."

gemma/wiki_lingua_arabo_ar

  • Descrizione della configurazione : Wikilingua è un set di dati multilingue su larga scala per la valutazione di sistemi di riepilogo astrattivo interlinguistici.

  • Dimensione del download : 56.25 MiB

  • Dimensione del set di dati: 291.42 MiB

  • Cache automatica ( documentazione ): No

  • Divisioni :

Diviso Esempi
'test' 5.841
'train' 20.441
'validation' 2.919
  • Struttura delle caratteristiche :
FeaturesDict({
    'gem_id': string,
    'gem_parent_id': string,
    'references': Sequence(string),
    'source': string,
    'source_aligned': Translation({
        'ar': Text(shape=(), dtype=string),
        'en': Text(shape=(), dtype=string),
    }),
    'target': string,
    'target_aligned': Translation({
        'ar': Text(shape=(), dtype=string),
        'en': Text(shape=(), dtype=string),
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
gem_id Tensore corda
gem_parent_id Tensore corda
Riferimenti Sequenza (tensore) (Nessuno,) corda
fonte Tensore corda
source_aligned Traduzione
source_aligned/ar Testo corda
source_aligned/it Testo corda
obbiettivo Tensore corda
target_aligned Traduzione
target_aligned/ar Testo corda
target_aligned/it Testo corda
  • Citazione :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
  author    = {Sebastian Gehrmann and
               Tosin P. Adewumi and
               Karmanya Aggarwal and
               Pawan Sasanka Ammanamanchi and
               Aremu Anuoluwapo and
               Antoine Bosselut and
               Khyathi Raghavi Chandu and
               Miruna{-}Adriana Clinciu and
               Dipanjan Das and
               Kaustubh D. Dhole and
               Wanyu Du and
               Esin Durmus and
               Ondrej Dusek and
               Chris Emezue and
               Varun Gangal and
               Cristina Garbacea and
               Tatsunori Hashimoto and
               Yufang Hou and
               Yacine Jernite and
               Harsh Jhamtani and
               Yangfeng Ji and
               Shailza Jolly and
               Dhruv Kumar and
               Faisal Ladhak and
               Aman Madaan and
               Mounica Maddela and
               Khyati Mahajan and
               Saad Mahamood and
               Bodhisattwa Prasad Majumder and
               Pedro Henrique Martins and
               Angelina McMillan{-}Major and
               Simon Mille and
               Emiel van Miltenburg and
               Moin Nadeem and
               Shashi Narayan and
               Vitaly Nikolaev and
               Rubungo Andre Niyongabo and
               Salomey Osei and
               Ankur P. Parikh and
               Laura Perez{-}Beltrachini and
               Niranjan Ramesh Rao and
               Vikas Raunak and
               Juan Diego Rodriguez and
               Sashank Santhanam and
               Jo{\~{a} }o Sedoc and
               Thibault Sellam and
               Samira Shaikh and
               Anastasia Shimorina and
               Marco Antonio Sobrevilla Cabezudo and
               Hendrik Strobelt and
               Nishant Subramani and
               Wei Xu and
               Diyi Yang and
               Akhila Yerukola and
               Jiawei Zhou},
  title     = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
               Metrics},
  journal   = {CoRR},
  volume    = {abs/2102.01672},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.01672},
  archivePrefix = {arXiv},
  eprint    = {2102.01672}
}

Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."

gemma/wiki_lingua_chinese_zh

  • Descrizione della configurazione : Wikilingua è un set di dati multilingue su larga scala per la valutazione di sistemi di riepilogo astrattivo interlinguistici.

  • Dimensione del download : 31.38 MiB

  • Dimensione del set di dati: 122.06 MiB

  • Auto-cache ( documentazione ): Sì

  • Divisioni :

Diviso Esempi
'test' 3.775
'train' 13.211
'validation' 1.886
  • Struttura delle caratteristiche :
FeaturesDict({
    'gem_id': string,
    'gem_parent_id': string,
    'references': Sequence(string),
    'source': string,
    'source_aligned': Translation({
        'en': Text(shape=(), dtype=string),
        'zh': Text(shape=(), dtype=string),
    }),
    'target': string,
    'target_aligned': Translation({
        'en': Text(shape=(), dtype=string),
        'zh': Text(shape=(), dtype=string),
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
gem_id Tensore corda
gem_parent_id Tensore corda
Riferimenti Sequenza (tensore) (Nessuno,) corda
fonte Tensore corda
source_aligned Traduzione
source_aligned/en Testo corda
source_aligned/zh Testo corda
obbiettivo Tensore corda
target_aligned Traduzione
target_aligned/it Testo corda
target_aligned/zh Testo corda
  • Citazione :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
  author    = {Sebastian Gehrmann and
               Tosin P. Adewumi and
               Karmanya Aggarwal and
               Pawan Sasanka Ammanamanchi and
               Aremu Anuoluwapo and
               Antoine Bosselut and
               Khyathi Raghavi Chandu and
               Miruna{-}Adriana Clinciu and
               Dipanjan Das and
               Kaustubh D. Dhole and
               Wanyu Du and
               Esin Durmus and
               Ondrej Dusek and
               Chris Emezue and
               Varun Gangal and
               Cristina Garbacea and
               Tatsunori Hashimoto and
               Yufang Hou and
               Yacine Jernite and
               Harsh Jhamtani and
               Yangfeng Ji and
               Shailza Jolly and
               Dhruv Kumar and
               Faisal Ladhak and
               Aman Madaan and
               Mounica Maddela and
               Khyati Mahajan and
               Saad Mahamood and
               Bodhisattwa Prasad Majumder and
               Pedro Henrique Martins and
               Angelina McMillan{-}Major and
               Simon Mille and
               Emiel van Miltenburg and
               Moin Nadeem and
               Shashi Narayan and
               Vitaly Nikolaev and
               Rubungo Andre Niyongabo and
               Salomey Osei and
               Ankur P. Parikh and
               Laura Perez{-}Beltrachini and
               Niranjan Ramesh Rao and
               Vikas Raunak and
               Juan Diego Rodriguez and
               Sashank Santhanam and
               Jo{\~{a} }o Sedoc and
               Thibault Sellam and
               Samira Shaikh and
               Anastasia Shimorina and
               Marco Antonio Sobrevilla Cabezudo and
               Hendrik Strobelt and
               Nishant Subramani and
               Wei Xu and
               Diyi Yang and
               Akhila Yerukola and
               Jiawei Zhou},
  title     = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
               Metrics},
  journal   = {CoRR},
  volume    = {abs/2102.01672},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.01672},
  archivePrefix = {arXiv},
  eprint    = {2102.01672}
}

Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."

gemma/wiki_lingua_czech_cs

  • Descrizione della configurazione : Wikilingua è un set di dati multilingue su larga scala per la valutazione di sistemi di riepilogo astrattivo interlinguistici.

  • Dimensione del download : 13.84 MiB

  • Dimensione del set di dati: 58.05 MiB

  • Auto-cache ( documentazione ): Sì

  • Divisioni :

Diviso Esempi
'test' 1.438
'train' 5.033
'validation' 718
  • Struttura delle caratteristiche :
FeaturesDict({
    'gem_id': string,
    'gem_parent_id': string,
    'references': Sequence(string),
    'source': string,
    'source_aligned': Translation({
        'cs': Text(shape=(), dtype=string),
        'en': Text(shape=(), dtype=string),
    }),
    'target': string,
    'target_aligned': Translation({
        'cs': Text(shape=(), dtype=string),
        'en': Text(shape=(), dtype=string),
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
gem_id Tensore corda
gem_parent_id Tensore corda
Riferimenti Sequenza (tensore) (Nessuno,) corda
fonte Tensore corda
source_aligned Traduzione
source_aligned/cs Testo corda
source_aligned/it Testo corda
obbiettivo Tensore corda
target_aligned Traduzione
target_aligned/cs Testo corda
target_aligned/it Testo corda
  • Citazione :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
  author    = {Sebastian Gehrmann and
               Tosin P. Adewumi and
               Karmanya Aggarwal and
               Pawan Sasanka Ammanamanchi and
               Aremu Anuoluwapo and
               Antoine Bosselut and
               Khyathi Raghavi Chandu and
               Miruna{-}Adriana Clinciu and
               Dipanjan Das and
               Kaustubh D. Dhole and
               Wanyu Du and
               Esin Durmus and
               Ondrej Dusek and
               Chris Emezue and
               Varun Gangal and
               Cristina Garbacea and
               Tatsunori Hashimoto and
               Yufang Hou and
               Yacine Jernite and
               Harsh Jhamtani and
               Yangfeng Ji and
               Shailza Jolly and
               Dhruv Kumar and
               Faisal Ladhak and
               Aman Madaan and
               Mounica Maddela and
               Khyati Mahajan and
               Saad Mahamood and
               Bodhisattwa Prasad Majumder and
               Pedro Henrique Martins and
               Angelina McMillan{-}Major and
               Simon Mille and
               Emiel van Miltenburg and
               Moin Nadeem and
               Shashi Narayan and
               Vitaly Nikolaev and
               Rubungo Andre Niyongabo and
               Salomey Osei and
               Ankur P. Parikh and
               Laura Perez{-}Beltrachini and
               Niranjan Ramesh Rao and
               Vikas Raunak and
               Juan Diego Rodriguez and
               Sashank Santhanam and
               Jo{\~{a} }o Sedoc and
               Thibault Sellam and
               Samira Shaikh and
               Anastasia Shimorina and
               Marco Antonio Sobrevilla Cabezudo and
               Hendrik Strobelt and
               Nishant Subramani and
               Wei Xu and
               Diyi Yang and
               Akhila Yerukola and
               Jiawei Zhou},
  title     = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
               Metrics},
  journal   = {CoRR},
  volume    = {abs/2102.01672},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.01672},
  archivePrefix = {arXiv},
  eprint    = {2102.01672}
}

Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."

gem/wiki_lingua_olandese_nl

  • Descrizione della configurazione : Wikilingua è un set di dati multilingue su larga scala per la valutazione di sistemi di riepilogo astrattivo interlinguistici.

  • Dimensione del download : 53.88 MiB

  • Dimensione del set di dati: 237.97 MiB

  • Cache automatica ( documentazione ): Sì (test, convalida), solo quando shuffle_files=False (train)

  • Divisioni :

Diviso Esempi
'test' 6.248
'train' 21.866
'validation' 3.123
  • Struttura delle caratteristiche :
FeaturesDict({
    'gem_id': string,
    'gem_parent_id': string,
    'references': Sequence(string),
    'source': string,
    'source_aligned': Translation({
        'en': Text(shape=(), dtype=string),
        'nl': Text(shape=(), dtype=string),
    }),
    'target': string,
    'target_aligned': Translation({
        'en': Text(shape=(), dtype=string),
        'nl': Text(shape=(), dtype=string),
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
gem_id Tensore corda
gem_parent_id Tensore corda
Riferimenti Sequenza (tensore) (Nessuno,) corda
fonte Tensore corda
source_aligned Traduzione
source_aligned/it Testo corda
source_aligned/it Testo corda
obbiettivo Tensore corda
target_aligned Traduzione
target_aligned/it Testo corda
target_aligned/nl Testo corda
  • Citazione :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
  author    = {Sebastian Gehrmann and
               Tosin P. Adewumi and
               Karmanya Aggarwal and
               Pawan Sasanka Ammanamanchi and
               Aremu Anuoluwapo and
               Antoine Bosselut and
               Khyathi Raghavi Chandu and
               Miruna{-}Adriana Clinciu and
               Dipanjan Das and
               Kaustubh D. Dhole and
               Wanyu Du and
               Esin Durmus and
               Ondrej Dusek and
               Chris Emezue and
               Varun Gangal and
               Cristina Garbacea and
               Tatsunori Hashimoto and
               Yufang Hou and
               Yacine Jernite and
               Harsh Jhamtani and
               Yangfeng Ji and
               Shailza Jolly and
               Dhruv Kumar and
               Faisal Ladhak and
               Aman Madaan and
               Mounica Maddela and
               Khyati Mahajan and
               Saad Mahamood and
               Bodhisattwa Prasad Majumder and
               Pedro Henrique Martins and
               Angelina McMillan{-}Major and
               Simon Mille and
               Emiel van Miltenburg and
               Moin Nadeem and
               Shashi Narayan and
               Vitaly Nikolaev and
               Rubungo Andre Niyongabo and
               Salomey Osei and
               Ankur P. Parikh and
               Laura Perez{-}Beltrachini and
               Niranjan Ramesh Rao and
               Vikas Raunak and
               Juan Diego Rodriguez and
               Sashank Santhanam and
               Jo{\~{a} }o Sedoc and
               Thibault Sellam and
               Samira Shaikh and
               Anastasia Shimorina and
               Marco Antonio Sobrevilla Cabezudo and
               Hendrik Strobelt and
               Nishant Subramani and
               Wei Xu and
               Diyi Yang and
               Akhila Yerukola and
               Jiawei Zhou},
  title     = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
               Metrics},
  journal   = {CoRR},
  volume    = {abs/2102.01672},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.01672},
  archivePrefix = {arXiv},
  eprint    = {2102.01672}
}

Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."

gem/wiki_lingua_english_en

  • Descrizione della configurazione : Wikilingua è un set di dati multilingue su larga scala per la valutazione di sistemi di riepilogo astrattivo interlinguistici.

  • Dimensione del download : 112.56 MiB

  • Dimensione del set di dati: 657.51 MiB

  • Cache automatica ( documentazione ): No

  • Divisioni :

Diviso Esempi
'test' 28.614
'train' 99.020
'validation' 13.823
  • Struttura delle caratteristiche :
FeaturesDict({
    'gem_id': string,
    'gem_parent_id': string,
    'references': Sequence(string),
    'source': string,
    'source_aligned': Translation({
        'en': Text(shape=(), dtype=string),
    }),
    'target': string,
    'target_aligned': Translation({
        'en': Text(shape=(), dtype=string),
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
gem_id Tensore corda
gem_parent_id Tensore corda
Riferimenti Sequenza (tensore) (Nessuno,) corda
fonte Tensore corda
source_aligned Traduzione
source_aligned/it Testo corda
obbiettivo Tensore corda
target_aligned Traduzione
target_aligned/it Testo corda
  • Citazione :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
  author    = {Sebastian Gehrmann and
               Tosin P. Adewumi and
               Karmanya Aggarwal and
               Pawan Sasanka Ammanamanchi and
               Aremu Anuoluwapo and
               Antoine Bosselut and
               Khyathi Raghavi Chandu and
               Miruna{-}Adriana Clinciu and
               Dipanjan Das and
               Kaustubh D. Dhole and
               Wanyu Du and
               Esin Durmus and
               Ondrej Dusek and
               Chris Emezue and
               Varun Gangal and
               Cristina Garbacea and
               Tatsunori Hashimoto and
               Yufang Hou and
               Yacine Jernite and
               Harsh Jhamtani and
               Yangfeng Ji and
               Shailza Jolly and
               Dhruv Kumar and
               Faisal Ladhak and
               Aman Madaan and
               Mounica Maddela and
               Khyati Mahajan and
               Saad Mahamood and
               Bodhisattwa Prasad Majumder and
               Pedro Henrique Martins and
               Angelina McMillan{-}Major and
               Simon Mille and
               Emiel van Miltenburg and
               Moin Nadeem and
               Shashi Narayan and
               Vitaly Nikolaev and
               Rubungo Andre Niyongabo and
               Salomey Osei and
               Ankur P. Parikh and
               Laura Perez{-}Beltrachini and
               Niranjan Ramesh Rao and
               Vikas Raunak and
               Juan Diego Rodriguez and
               Sashank Santhanam and
               Jo{\~{a} }o Sedoc and
               Thibault Sellam and
               Samira Shaikh and
               Anastasia Shimorina and
               Marco Antonio Sobrevilla Cabezudo and
               Hendrik Strobelt and
               Nishant Subramani and
               Wei Xu and
               Diyi Yang and
               Akhila Yerukola and
               Jiawei Zhou},
  title     = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
               Metrics},
  journal   = {CoRR},
  volume    = {abs/2102.01672},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.01672},
  archivePrefix = {arXiv},
  eprint    = {2102.01672}
}

Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."

gemma/wiki_lingua_francese_fr

  • Descrizione della configurazione : Wikilingua è un set di dati multilingue su larga scala per la valutazione di sistemi di riepilogo astrattivo interlinguistici.

  • Dimensione del download : 113.26 MiB

  • Dimensione del set di dati: 522.28 MiB

  • Cache automatica ( documentazione ): No

  • Divisioni :

Diviso Esempi
'test' 12.731
'train' 44.556
'validation' 6.364
  • Struttura delle caratteristiche :
FeaturesDict({
    'gem_id': string,
    'gem_parent_id': string,
    'references': Sequence(string),
    'source': string,
    'source_aligned': Translation({
        'en': Text(shape=(), dtype=string),
        'fr': Text(shape=(), dtype=string),
    }),
    'target': string,
    'target_aligned': Translation({
        'en': Text(shape=(), dtype=string),
        'fr': Text(shape=(), dtype=string),
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
gem_id Tensore corda
gem_parent_id Tensore corda
Riferimenti Sequenza (tensore) (Nessuno,) corda
fonte Tensore corda
source_aligned Traduzione
source_aligned/en Testo corda
source_aligned/fr Testo corda
obbiettivo Tensore corda
target_aligned Traduzione
target_aligned/it Testo corda
target_aligned/fr Testo corda
  • Citazione :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
  author    = {Sebastian Gehrmann and
               Tosin P. Adewumi and
               Karmanya Aggarwal and
               Pawan Sasanka Ammanamanchi and
               Aremu Anuoluwapo and
               Antoine Bosselut and
               Khyathi Raghavi Chandu and
               Miruna{-}Adriana Clinciu and
               Dipanjan Das and
               Kaustubh D. Dhole and
               Wanyu Du and
               Esin Durmus and
               Ondrej Dusek and
               Chris Emezue and
               Varun Gangal and
               Cristina Garbacea and
               Tatsunori Hashimoto and
               Yufang Hou and
               Yacine Jernite and
               Harsh Jhamtani and
               Yangfeng Ji and
               Shailza Jolly and
               Dhruv Kumar and
               Faisal Ladhak and
               Aman Madaan and
               Mounica Maddela and
               Khyati Mahajan and
               Saad Mahamood and
               Bodhisattwa Prasad Majumder and
               Pedro Henrique Martins and
               Angelina McMillan{-}Major and
               Simon Mille and
               Emiel van Miltenburg and
               Moin Nadeem and
               Shashi Narayan and
               Vitaly Nikolaev and
               Rubungo Andre Niyongabo and
               Salomey Osei and
               Ankur P. Parikh and
               Laura Perez{-}Beltrachini and
               Niranjan Ramesh Rao and
               Vikas Raunak and
               Juan Diego Rodriguez and
               Sashank Santhanam and
               Jo{\~{a} }o Sedoc and
               Thibault Sellam and
               Samira Shaikh and
               Anastasia Shimorina and
               Marco Antonio Sobrevilla Cabezudo and
               Hendrik Strobelt and
               Nishant Subramani and
               Wei Xu and
               Diyi Yang and
               Akhila Yerukola and
               Jiawei Zhou},
  title     = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
               Metrics},
  journal   = {CoRR},
  volume    = {abs/2102.01672},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.01672},
  archivePrefix = {arXiv},
  eprint    = {2102.01672}
}

Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."

gemma/wiki_lingua_tedesca

  • Descrizione della configurazione : Wikilingua è un set di dati multilingue su larga scala per la valutazione di sistemi di riepilogo astrattivo interlinguistici.

  • Dimensione del download : 102.65 MiB

  • Dimensione del set di dati: 452.46 MiB

  • Cache automatica ( documentazione ): No

  • Divisioni :

Diviso Esempi
'test' 11.669
'train' 40.839
'validation' 5.833
  • Struttura delle caratteristiche :
FeaturesDict({
    'gem_id': string,
    'gem_parent_id': string,
    'references': Sequence(string),
    'source': string,
    'source_aligned': Translation({
        'de': Text(shape=(), dtype=string),
        'en': Text(shape=(), dtype=string),
    }),
    'target': string,
    'target_aligned': Translation({
        'de': Text(shape=(), dtype=string),
        'en': Text(shape=(), dtype=string),
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
gem_id Tensore corda
gem_parent_id Tensore corda
Riferimenti Sequenza (tensore) (Nessuno,) corda
fonte Tensore corda
source_aligned Traduzione
source_aligned/de Testo corda
source_aligned/en Testo corda
obbiettivo Tensore corda
target_aligned Traduzione
target_aligned/de Testo corda
target_aligned/it Testo corda
  • Citazione :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
  author    = {Sebastian Gehrmann and
               Tosin P. Adewumi and
               Karmanya Aggarwal and
               Pawan Sasanka Ammanamanchi and
               Aremu Anuoluwapo and
               Antoine Bosselut and
               Khyathi Raghavi Chandu and
               Miruna{-}Adriana Clinciu and
               Dipanjan Das and
               Kaustubh D. Dhole and
               Wanyu Du and
               Esin Durmus and
               Ondrej Dusek and
               Chris Emezue and
               Varun Gangal and
               Cristina Garbacea and
               Tatsunori Hashimoto and
               Yufang Hou and
               Yacine Jernite and
               Harsh Jhamtani and
               Yangfeng Ji and
               Shailza Jolly and
               Dhruv Kumar and
               Faisal Ladhak and
               Aman Madaan and
               Mounica Maddela and
               Khyati Mahajan and
               Saad Mahamood and
               Bodhisattwa Prasad Majumder and
               Pedro Henrique Martins and
               Angelina McMillan{-}Major and
               Simon Mille and
               Emiel van Miltenburg and
               Moin Nadeem and
               Shashi Narayan and
               Vitaly Nikolaev and
               Rubungo Andre Niyongabo and
               Salomey Osei and
               Ankur P. Parikh and
               Laura Perez{-}Beltrachini and
               Niranjan Ramesh Rao and
               Vikas Raunak and
               Juan Diego Rodriguez and
               Sashank Santhanam and
               Jo{\~{a} }o Sedoc and
               Thibault Sellam and
               Samira Shaikh and
               Anastasia Shimorina and
               Marco Antonio Sobrevilla Cabezudo and
               Hendrik Strobelt and
               Nishant Subramani and
               Wei Xu and
               Diyi Yang and
               Akhila Yerukola and
               Jiawei Zhou},
  title     = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
               Metrics},
  journal   = {CoRR},
  volume    = {abs/2102.01672},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.01672},
  archivePrefix = {arXiv},
  eprint    = {2102.01672}
}

Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."

gemma/wiki_lingua_hindi_ciao

  • Descrizione della configurazione : Wikilingua è un set di dati multilingue su larga scala per la valutazione di sistemi di riepilogo astrattivo interlinguistici.

  • Dimensione del download : 20.07 MiB

  • Dimensione del set di dati: 138.06 MiB

  • Auto-cache ( documentazione ): Sì

  • Divisioni :

Diviso Esempi
'test' 1.984
'train' 6.942
'validation' 991
  • Struttura delle caratteristiche :
FeaturesDict({
    'gem_id': string,
    'gem_parent_id': string,
    'references': Sequence(string),
    'source': string,
    'source_aligned': Translation({
        'en': Text(shape=(), dtype=string),
        'hi': Text(shape=(), dtype=string),
    }),
    'target': string,
    'target_aligned': Translation({
        'en': Text(shape=(), dtype=string),
        'hi': Text(shape=(), dtype=string),
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
gem_id Tensore corda
gem_parent_id Tensore corda
Riferimenti Sequenza (tensore) (Nessuno,) corda
fonte Tensore corda
source_aligned Traduzione
source_aligned/en Testo corda
source_aligned/ciao Testo corda
obbiettivo Tensore corda
target_aligned Traduzione
target_aligned/it Testo corda
target_aligned/ciao Testo corda
  • Citazione :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
  author    = {Sebastian Gehrmann and
               Tosin P. Adewumi and
               Karmanya Aggarwal and
               Pawan Sasanka Ammanamanchi and
               Aremu Anuoluwapo and
               Antoine Bosselut and
               Khyathi Raghavi Chandu and
               Miruna{-}Adriana Clinciu and
               Dipanjan Das and
               Kaustubh D. Dhole and
               Wanyu Du and
               Esin Durmus and
               Ondrej Dusek and
               Chris Emezue and
               Varun Gangal and
               Cristina Garbacea and
               Tatsunori Hashimoto and
               Yufang Hou and
               Yacine Jernite and
               Harsh Jhamtani and
               Yangfeng Ji and
               Shailza Jolly and
               Dhruv Kumar and
               Faisal Ladhak and
               Aman Madaan and
               Mounica Maddela and
               Khyati Mahajan and
               Saad Mahamood and
               Bodhisattwa Prasad Majumder and
               Pedro Henrique Martins and
               Angelina McMillan{-}Major and
               Simon Mille and
               Emiel van Miltenburg and
               Moin Nadeem and
               Shashi Narayan and
               Vitaly Nikolaev and
               Rubungo Andre Niyongabo and
               Salomey Osei and
               Ankur P. Parikh and
               Laura Perez{-}Beltrachini and
               Niranjan Ramesh Rao and
               Vikas Raunak and
               Juan Diego Rodriguez and
               Sashank Santhanam and
               Jo{\~{a} }o Sedoc and
               Thibault Sellam and
               Samira Shaikh and
               Anastasia Shimorina and
               Marco Antonio Sobrevilla Cabezudo and
               Hendrik Strobelt and
               Nishant Subramani and
               Wei Xu and
               Diyi Yang and
               Akhila Yerukola and
               Jiawei Zhou},
  title     = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
               Metrics},
  journal   = {CoRR},
  volume    = {abs/2102.01672},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.01672},
  archivePrefix = {arXiv},
  eprint    = {2102.01672}
}

Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."

gem/wiki_lingua_indonesian_id

  • Descrizione della configurazione : Wikilingua è un set di dati multilingue su larga scala per la valutazione di sistemi di riepilogo astrattivo interlinguistici.

  • Dimensione del download : 80.08 MiB

  • Dimensione del set di dati: 370.63 MiB

  • Cache automatica ( documentazione ): No

  • Divisioni :

Diviso Esempi
'test' 9.497
'train' 33.237
'validation' 4.747
  • Struttura delle caratteristiche :
FeaturesDict({
    'gem_id': string,
    'gem_parent_id': string,
    'references': Sequence(string),
    'source': string,
    'source_aligned': Translation({
        'en': Text(shape=(), dtype=string),
        'id': Text(shape=(), dtype=string),
    }),
    'target': string,
    'target_aligned': Translation({
        'en': Text(shape=(), dtype=string),
        'id': Text(shape=(), dtype=string),
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
gem_id Tensore corda
gem_parent_id Tensore corda
Riferimenti Sequenza (tensore) (Nessuno,) corda
fonte Tensore corda
source_aligned Traduzione
source_aligned/it Testo corda
source_aligned/id Testo corda
obbiettivo Tensore corda
target_aligned Traduzione
target_aligned/it Testo corda
target_aligned/id Testo corda
  • Citazione :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
  author    = {Sebastian Gehrmann and
               Tosin P. Adewumi and
               Karmanya Aggarwal and
               Pawan Sasanka Ammanamanchi and
               Aremu Anuoluwapo and
               Antoine Bosselut and
               Khyathi Raghavi Chandu and
               Miruna{-}Adriana Clinciu and
               Dipanjan Das and
               Kaustubh D. Dhole and
               Wanyu Du and
               Esin Durmus and
               Ondrej Dusek and
               Chris Emezue and
               Varun Gangal and
               Cristina Garbacea and
               Tatsunori Hashimoto and
               Yufang Hou and
               Yacine Jernite and
               Harsh Jhamtani and
               Yangfeng Ji and
               Shailza Jolly and
               Dhruv Kumar and
               Faisal Ladhak and
               Aman Madaan and
               Mounica Maddela and
               Khyati Mahajan and
               Saad Mahamood and
               Bodhisattwa Prasad Majumder and
               Pedro Henrique Martins and
               Angelina McMillan{-}Major and
               Simon Mille and
               Emiel van Miltenburg and
               Moin Nadeem and
               Shashi Narayan and
               Vitaly Nikolaev and
               Rubungo Andre Niyongabo and
               Salomey Osei and
               Ankur P. Parikh and
               Laura Perez{-}Beltrachini and
               Niranjan Ramesh Rao and
               Vikas Raunak and
               Juan Diego Rodriguez and
               Sashank Santhanam and
               Jo{\~{a} }o Sedoc and
               Thibault Sellam and
               Samira Shaikh and
               Anastasia Shimorina and
               Marco Antonio Sobrevilla Cabezudo and
               Hendrik Strobelt and
               Nishant Subramani and
               Wei Xu and
               Diyi Yang and
               Akhila Yerukola and
               Jiawei Zhou},
  title     = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
               Metrics},
  journal   = {CoRR},
  volume    = {abs/2102.01672},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.01672},
  archivePrefix = {arXiv},
  eprint    = {2102.01672}
}

Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."

gem/wiki_lingua_italian_it

  • Descrizione della configurazione : Wikilingua è un set di dati multilingue su larga scala per la valutazione di sistemi di riepilogo astrattivo interlinguistici.

  • Dimensione del download : 84.80 MiB

  • Dimensione del set di dati: 374.40 MiB

  • Cache automatica ( documentazione ): No

  • Divisioni :

Diviso Esempi
'test' 10.189
'train' 35.661
'validation' 5.093
  • Struttura delle caratteristiche :
FeaturesDict({
    'gem_id': string,
    'gem_parent_id': string,
    'references': Sequence(string),
    'source': string,
    'source_aligned': Translation({
        'en': Text(shape=(), dtype=string),
        'it': Text(shape=(), dtype=string),
    }),
    'target': string,
    'target_aligned': Translation({
        'en': Text(shape=(), dtype=string),
        'it': Text(shape=(), dtype=string),
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
gem_id Tensore corda
gem_parent_id Tensore corda
Riferimenti Sequenza (tensore) (Nessuno,) corda
fonte Tensore corda
source_aligned Traduzione
source_aligned/en Testo corda
source_aligned/it Testo corda
obbiettivo Tensore corda
target_aligned Traduzione
target_aligned/it Testo corda
target_aligned/it Testo corda
  • Citazione :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
  author    = {Sebastian Gehrmann and
               Tosin P. Adewumi and
               Karmanya Aggarwal and
               Pawan Sasanka Ammanamanchi and
               Aremu Anuoluwapo and
               Antoine Bosselut and
               Khyathi Raghavi Chandu and
               Miruna{-}Adriana Clinciu and
               Dipanjan Das and
               Kaustubh D. Dhole and
               Wanyu Du and
               Esin Durmus and
               Ondrej Dusek and
               Chris Emezue and
               Varun Gangal and
               Cristina Garbacea and
               Tatsunori Hashimoto and
               Yufang Hou and
               Yacine Jernite and
               Harsh Jhamtani and
               Yangfeng Ji and
               Shailza Jolly and
               Dhruv Kumar and
               Faisal Ladhak and
               Aman Madaan and
               Mounica Maddela and
               Khyati Mahajan and
               Saad Mahamood and
               Bodhisattwa Prasad Majumder and
               Pedro Henrique Martins and
               Angelina McMillan{-}Major and
               Simon Mille and
               Emiel van Miltenburg and
               Moin Nadeem and
               Shashi Narayan and
               Vitaly Nikolaev and
               Rubungo Andre Niyongabo and
               Salomey Osei and
               Ankur P. Parikh and
               Laura Perez{-}Beltrachini and
               Niranjan Ramesh Rao and
               Vikas Raunak and
               Juan Diego Rodriguez and
               Sashank Santhanam and
               Jo{\~{a} }o Sedoc and
               Thibault Sellam and
               Samira Shaikh and
               Anastasia Shimorina and
               Marco Antonio Sobrevilla Cabezudo and
               Hendrik Strobelt and
               Nishant Subramani and
               Wei Xu and
               Diyi Yang and
               Akhila Yerukola and
               Jiawei Zhou},
  title     = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
               Metrics},
  journal   = {CoRR},
  volume    = {abs/2102.01672},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.01672},
  archivePrefix = {arXiv},
  eprint    = {2102.01672}
}

Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."

gem/wiki_lingua_japanese_ja

  • Descrizione della configurazione : Wikilingua è un set di dati multilingue su larga scala per la valutazione di sistemi di riepilogo astrattivo interlinguistici.

  • Dimensione del download : 21.75 MiB

  • Dimensione del set di dati: 103.19 MiB

  • Auto-cache ( documentazione ): Sì

  • Divisioni :

Diviso Esempi
'test' 2.530
'train' 8.853
'validation' 1.264
  • Struttura delle caratteristiche :
FeaturesDict({
    'gem_id': string,
    'gem_parent_id': string,
    'references': Sequence(string),
    'source': string,
    'source_aligned': Translation({
        'en': Text(shape=(), dtype=string),
        'ja': Text(shape=(), dtype=string),
    }),
    'target': string,
    'target_aligned': Translation({
        'en': Text(shape=(), dtype=string),
        'ja': Text(shape=(), dtype=string),
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
gem_id Tensore corda
gem_parent_id Tensore corda
Riferimenti Sequenza (tensore) (Nessuno,) corda
fonte Tensore corda
source_aligned Traduzione
source_aligned/en Testo corda
source_aligned/ja Testo corda
obbiettivo Tensore corda
target_aligned Traduzione
target_aligned/it Testo corda
target_aligned/ja Testo corda
  • Citazione :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
  author    = {Sebastian Gehrmann and
               Tosin P. Adewumi and
               Karmanya Aggarwal and
               Pawan Sasanka Ammanamanchi and
               Aremu Anuoluwapo and
               Antoine Bosselut and
               Khyathi Raghavi Chandu and
               Miruna{-}Adriana Clinciu and
               Dipanjan Das and
               Kaustubh D. Dhole and
               Wanyu Du and
               Esin Durmus and
               Ondrej Dusek and
               Chris Emezue and
               Varun Gangal and
               Cristina Garbacea and
               Tatsunori Hashimoto and
               Yufang Hou and
               Yacine Jernite and
               Harsh Jhamtani and
               Yangfeng Ji and
               Shailza Jolly and
               Dhruv Kumar and
               Faisal Ladhak and
               Aman Madaan and
               Mounica Maddela and
               Khyati Mahajan and
               Saad Mahamood and
               Bodhisattwa Prasad Majumder and
               Pedro Henrique Martins and
               Angelina McMillan{-}Major and
               Simon Mille and
               Emiel van Miltenburg and
               Moin Nadeem and
               Shashi Narayan and
               Vitaly Nikolaev and
               Rubungo Andre Niyongabo and
               Salomey Osei and
               Ankur P. Parikh and
               Laura Perez{-}Beltrachini and
               Niranjan Ramesh Rao and
               Vikas Raunak and
               Juan Diego Rodriguez and
               Sashank Santhanam and
               Jo{\~{a} }o Sedoc and
               Thibault Sellam and
               Samira Shaikh and
               Anastasia Shimorina and
               Marco Antonio Sobrevilla Cabezudo and
               Hendrik Strobelt and
               Nishant Subramani and
               Wei Xu and
               Diyi Yang and
               Akhila Yerukola and
               Jiawei Zhou},
  title     = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
               Metrics},
  journal   = {CoRR},
  volume    = {abs/2102.01672},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.01672},
  archivePrefix = {arXiv},
  eprint    = {2102.01672}
}

Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."

gemma/wiki_lingua_coreano_ko

  • Descrizione della configurazione : Wikilingua è un set di dati multilingue su larga scala per la valutazione di sistemi di riepilogo astrattivo interlinguistici.

  • Dimensione del download : 22.26 MiB

  • Dimensione del set di dati: 102.35 MiB

  • Auto-cache ( documentazione ): Sì

  • Divisioni :

Diviso Esempi
'test' 2.436
'train' 8.524
'validation' 1.216
  • Struttura delle caratteristiche :
FeaturesDict({
    'gem_id': string,
    'gem_parent_id': string,
    'references': Sequence(string),
    'source': string,
    'source_aligned': Translation({
        'en': Text(shape=(), dtype=string),
        'ko': Text(shape=(), dtype=string),
    }),
    'target': string,
    'target_aligned': Translation({
        'en': Text(shape=(), dtype=string),
        'ko': Text(shape=(), dtype=string),
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
gem_id Tensore corda
gem_parent_id Tensore corda
Riferimenti Sequenza (tensore) (Nessuno,) corda
fonte Tensore corda
source_aligned Traduzione
source_aligned/it Testo corda
source_aligned/ko Testo corda
obbiettivo Tensore corda
target_aligned Traduzione
target_aligned/it Testo corda
target_aligned/ko Testo corda
  • Citazione :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
  author    = {Sebastian Gehrmann and
               Tosin P. Adewumi and
               Karmanya Aggarwal and
               Pawan Sasanka Ammanamanchi and
               Aremu Anuoluwapo and
               Antoine Bosselut and
               Khyathi Raghavi Chandu and
               Miruna{-}Adriana Clinciu and
               Dipanjan Das and
               Kaustubh D. Dhole and
               Wanyu Du and
               Esin Durmus and
               Ondrej Dusek and
               Chris Emezue and
               Varun Gangal and
               Cristina Garbacea and
               Tatsunori Hashimoto and
               Yufang Hou and
               Yacine Jernite and
               Harsh Jhamtani and
               Yangfeng Ji and
               Shailza Jolly and
               Dhruv Kumar and
               Faisal Ladhak and
               Aman Madaan and
               Mounica Maddela and
               Khyati Mahajan and
               Saad Mahamood and
               Bodhisattwa Prasad Majumder and
               Pedro Henrique Martins and
               Angelina McMillan{-}Major and
               Simon Mille and
               Emiel van Miltenburg and
               Moin Nadeem and
               Shashi Narayan and
               Vitaly Nikolaev and
               Rubungo Andre Niyongabo and
               Salomey Osei and
               Ankur P. Parikh and
               Laura Perez{-}Beltrachini and
               Niranjan Ramesh Rao and
               Vikas Raunak and
               Juan Diego Rodriguez and
               Sashank Santhanam and
               Jo{\~{a} }o Sedoc and
               Thibault Sellam and
               Samira Shaikh and
               Anastasia Shimorina and
               Marco Antonio Sobrevilla Cabezudo and
               Hendrik Strobelt and
               Nishant Subramani and
               Wei Xu and
               Diyi Yang and
               Akhila Yerukola and
               Jiawei Zhou},
  title     = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
               Metrics},
  journal   = {CoRR},
  volume    = {abs/2102.01672},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.01672},
  archivePrefix = {arXiv},
  eprint    = {2102.01672}
}

Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."

gem/wiki_lingua_portoghese_pt

  • Descrizione della configurazione : Wikilingua è un set di dati multilingue su larga scala per la valutazione di sistemi di riepilogo astrattivo interlinguistici.

  • Dimensione del download : 131.17 MiB

  • Dimensione del set di dati: 570.46 MiB

  • Cache automatica ( documentazione ): No

  • Divisioni :

Diviso Esempi
'test' 16.331
'train' 57.159
'validation' 8.165
  • Struttura delle caratteristiche :
FeaturesDict({
    'gem_id': string,
    'gem_parent_id': string,
    'references': Sequence(string),
    'source': string,
    'source_aligned': Translation({
        'en': Text(shape=(), dtype=string),
        'pt': Text(shape=(), dtype=string),
    }),
    'target': string,
    'target_aligned': Translation({
        'en': Text(shape=(), dtype=string),
        'pt': Text(shape=(), dtype=string),
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
gem_id Tensore corda
gem_parent_id Tensore corda
Riferimenti Sequenza (tensore) (Nessuno,) corda
fonte Tensore corda
source_aligned Traduzione
source_aligned/it Testo corda
source_aligned/pt Testo corda
obbiettivo Tensore corda
target_aligned Traduzione
target_aligned/it Testo corda
target_aligned/pt Testo corda
  • Citazione :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
  author    = {Sebastian Gehrmann and
               Tosin P. Adewumi and
               Karmanya Aggarwal and
               Pawan Sasanka Ammanamanchi and
               Aremu Anuoluwapo and
               Antoine Bosselut and
               Khyathi Raghavi Chandu and
               Miruna{-}Adriana Clinciu and
               Dipanjan Das and
               Kaustubh D. Dhole and
               Wanyu Du and
               Esin Durmus and
               Ondrej Dusek and
               Chris Emezue and
               Varun Gangal and
               Cristina Garbacea and
               Tatsunori Hashimoto and
               Yufang Hou and
               Yacine Jernite and
               Harsh Jhamtani and
               Yangfeng Ji and
               Shailza Jolly and
               Dhruv Kumar and
               Faisal Ladhak and
               Aman Madaan and
               Mounica Maddela and
               Khyati Mahajan and
               Saad Mahamood and
               Bodhisattwa Prasad Majumder and
               Pedro Henrique Martins and
               Angelina McMillan{-}Major and
               Simon Mille and
               Emiel van Miltenburg and
               Moin Nadeem and
               Shashi Narayan and
               Vitaly Nikolaev and
               Rubungo Andre Niyongabo and
               Salomey Osei and
               Ankur P. Parikh and
               Laura Perez{-}Beltrachini and
               Niranjan Ramesh Rao and
               Vikas Raunak and
               Juan Diego Rodriguez and
               Sashank Santhanam and
               Jo{\~{a} }o Sedoc and
               Thibault Sellam and
               Samira Shaikh and
               Anastasia Shimorina and
               Marco Antonio Sobrevilla Cabezudo and
               Hendrik Strobelt and
               Nishant Subramani and
               Wei Xu and
               Diyi Yang and
               Akhila Yerukola and
               Jiawei Zhou},
  title     = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
               Metrics},
  journal   = {CoRR},
  volume    = {abs/2102.01672},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.01672},
  archivePrefix = {arXiv},
  eprint    = {2102.01672}
}

Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."

gemma/wiki_lingua_russa_ru

  • Descrizione della configurazione : Wikilingua è un set di dati multilingue su larga scala per la valutazione di sistemi di riepilogo astrattivo interlinguistici.

  • Dimensione del download : 101.36 MiB

  • Dimensione del set di dati: 564.69 MiB

  • Cache automatica ( documentazione ): No

  • Divisioni :

Diviso Esempi
'test' 10.580
'train' 37.028
'validation' 5.288
  • Struttura delle caratteristiche :
FeaturesDict({
    'gem_id': string,
    'gem_parent_id': string,
    'references': Sequence(string),
    'source': string,
    'source_aligned': Translation({
        'en': Text(shape=(), dtype=string),
        'ru': Text(shape=(), dtype=string),
    }),
    'target': string,
    'target_aligned': Translation({
        'en': Text(shape=(), dtype=string),
        'ru': Text(shape=(), dtype=string),
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
gem_id Tensore corda
gem_parent_id Tensore corda
Riferimenti Sequenza (tensore) (Nessuno,) corda
fonte Tensore corda
source_aligned Traduzione
source_aligned/it Testo corda
source_aligned/ru Testo corda
obbiettivo Tensore corda
target_aligned Traduzione
target_aligned/it Testo corda
target_aligned/ru Testo corda
  • Citazione :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
  author    = {Sebastian Gehrmann and
               Tosin P. Adewumi and
               Karmanya Aggarwal and
               Pawan Sasanka Ammanamanchi and
               Aremu Anuoluwapo and
               Antoine Bosselut and
               Khyathi Raghavi Chandu and
               Miruna{-}Adriana Clinciu and
               Dipanjan Das and
               Kaustubh D. Dhole and
               Wanyu Du and
               Esin Durmus and
               Ondrej Dusek and
               Chris Emezue and
               Varun Gangal and
               Cristina Garbacea and
               Tatsunori Hashimoto and
               Yufang Hou and
               Yacine Jernite and
               Harsh Jhamtani and
               Yangfeng Ji and
               Shailza Jolly and
               Dhruv Kumar and
               Faisal Ladhak and
               Aman Madaan and
               Mounica Maddela and
               Khyati Mahajan and
               Saad Mahamood and
               Bodhisattwa Prasad Majumder and
               Pedro Henrique Martins and
               Angelina McMillan{-}Major and
               Simon Mille and
               Emiel van Miltenburg and
               Moin Nadeem and
               Shashi Narayan and
               Vitaly Nikolaev and
               Rubungo Andre Niyongabo and
               Salomey Osei and
               Ankur P. Parikh and
               Laura Perez{-}Beltrachini and
               Niranjan Ramesh Rao and
               Vikas Raunak and
               Juan Diego Rodriguez and
               Sashank Santhanam and
               Jo{\~{a} }o Sedoc and
               Thibault Sellam and
               Samira Shaikh and
               Anastasia Shimorina and
               Marco Antonio Sobrevilla Cabezudo and
               Hendrik Strobelt and
               Nishant Subramani and
               Wei Xu and
               Diyi Yang and
               Akhila Yerukola and
               Jiawei Zhou},
  title     = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
               Metrics},
  journal   = {CoRR},
  volume    = {abs/2102.01672},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.01672},
  archivePrefix = {arXiv},
  eprint    = {2102.01672}
}

Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."

gemma/wiki_lingua_spanish_es

  • Descrizione della configurazione : Wikilingua è un set di dati multilingue su larga scala per la valutazione di sistemi di riepilogo astrattivo interlinguistici.

  • Dimensione del download : 189.06 MiB

  • Dimensione del set di dati: 849.75 MiB

  • Cache automatica ( documentazione ): No

  • Divisioni :

Diviso Esempi
'test' 22.632
'train' 79.212
'validation' 11.316
  • Struttura delle caratteristiche :
FeaturesDict({
    'gem_id': string,
    'gem_parent_id': string,
    'references': Sequence(string),
    'source': string,
    'source_aligned': Translation({
        'en': Text(shape=(), dtype=string),
        'es': Text(shape=(), dtype=string),
    }),
    'target': string,
    'target_aligned': Translation({
        'en': Text(shape=(), dtype=string),
        'es': Text(shape=(), dtype=string),
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
gem_id Tensore corda
gem_parent_id Tensore corda
Riferimenti Sequenza (tensore) (Nessuno,) corda
fonte Tensore corda
source_aligned Traduzione
source_aligned/it Testo corda
source_aligned/es Testo corda
obbiettivo Tensore corda
target_aligned Traduzione
target_aligned/it Testo corda
target_aligned/es Testo corda
  • Citazione :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
  author    = {Sebastian Gehrmann and
               Tosin P. Adewumi and
               Karmanya Aggarwal and
               Pawan Sasanka Ammanamanchi and
               Aremu Anuoluwapo and
               Antoine Bosselut and
               Khyathi Raghavi Chandu and
               Miruna{-}Adriana Clinciu and
               Dipanjan Das and
               Kaustubh D. Dhole and
               Wanyu Du and
               Esin Durmus and
               Ondrej Dusek and
               Chris Emezue and
               Varun Gangal and
               Cristina Garbacea and
               Tatsunori Hashimoto and
               Yufang Hou and
               Yacine Jernite and
               Harsh Jhamtani and
               Yangfeng Ji and
               Shailza Jolly and
               Dhruv Kumar and
               Faisal Ladhak and
               Aman Madaan and
               Mounica Maddela and
               Khyati Mahajan and
               Saad Mahamood and
               Bodhisattwa Prasad Majumder and
               Pedro Henrique Martins and
               Angelina McMillan{-}Major and
               Simon Mille and
               Emiel van Miltenburg and
               Moin Nadeem and
               Shashi Narayan and
               Vitaly Nikolaev and
               Rubungo Andre Niyongabo and
               Salomey Osei and
               Ankur P. Parikh and
               Laura Perez{-}Beltrachini and
               Niranjan Ramesh Rao and
               Vikas Raunak and
               Juan Diego Rodriguez and
               Sashank Santhanam and
               Jo{\~{a} }o Sedoc and
               Thibault Sellam and
               Samira Shaikh and
               Anastasia Shimorina and
               Marco Antonio Sobrevilla Cabezudo and
               Hendrik Strobelt and
               Nishant Subramani and
               Wei Xu and
               Diyi Yang and
               Akhila Yerukola and
               Jiawei Zhou},
  title     = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
               Metrics},
  journal   = {CoRR},
  volume    = {abs/2102.01672},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.01672},
  archivePrefix = {arXiv},
  eprint    = {2102.01672}
}

Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."

gem/wiki_lingua_thai_th

  • Descrizione della configurazione : Wikilingua è un set di dati multilingue su larga scala per la valutazione di sistemi di riepilogo astrattivo interlinguistici.

  • Dimensione del download : 28.60 MiB

  • Dimensione del set di dati: 193.77 MiB

  • Cache automatica ( documentazione ): Sì (test, convalida), solo quando shuffle_files=False (train)

  • Divisioni :

Diviso Esempi
'test' 2.950
'train' 10.325
'validation' 1.475
  • Struttura delle caratteristiche :
FeaturesDict({
    'gem_id': string,
    'gem_parent_id': string,
    'references': Sequence(string),
    'source': string,
    'source_aligned': Translation({
        'en': Text(shape=(), dtype=string),
        'th': Text(shape=(), dtype=string),
    }),
    'target': string,
    'target_aligned': Translation({
        'en': Text(shape=(), dtype=string),
        'th': Text(shape=(), dtype=string),
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
gem_id Tensore corda
gem_parent_id Tensore corda
Riferimenti Sequenza (tensore) (Nessuno,) corda
fonte Tensore corda
source_aligned Traduzione
source_aligned/it Testo corda
source_aligned/th Testo corda
obbiettivo Tensore corda
target_aligned Traduzione
target_aligned/it Testo corda
target_aligned/th Testo corda
  • Citazione :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
  author    = {Sebastian Gehrmann and
               Tosin P. Adewumi and
               Karmanya Aggarwal and
               Pawan Sasanka Ammanamanchi and
               Aremu Anuoluwapo and
               Antoine Bosselut and
               Khyathi Raghavi Chandu and
               Miruna{-}Adriana Clinciu and
               Dipanjan Das and
               Kaustubh D. Dhole and
               Wanyu Du and
               Esin Durmus and
               Ondrej Dusek and
               Chris Emezue and
               Varun Gangal and
               Cristina Garbacea and
               Tatsunori Hashimoto and
               Yufang Hou and
               Yacine Jernite and
               Harsh Jhamtani and
               Yangfeng Ji and
               Shailza Jolly and
               Dhruv Kumar and
               Faisal Ladhak and
               Aman Madaan and
               Mounica Maddela and
               Khyati Mahajan and
               Saad Mahamood and
               Bodhisattwa Prasad Majumder and
               Pedro Henrique Martins and
               Angelina McMillan{-}Major and
               Simon Mille and
               Emiel van Miltenburg and
               Moin Nadeem and
               Shashi Narayan and
               Vitaly Nikolaev and
               Rubungo Andre Niyongabo and
               Salomey Osei and
               Ankur P. Parikh and
               Laura Perez{-}Beltrachini and
               Niranjan Ramesh Rao and
               Vikas Raunak and
               Juan Diego Rodriguez and
               Sashank Santhanam and
               Jo{\~{a} }o Sedoc and
               Thibault Sellam and
               Samira Shaikh and
               Anastasia Shimorina and
               Marco Antonio Sobrevilla Cabezudo and
               Hendrik Strobelt and
               Nishant Subramani and
               Wei Xu and
               Diyi Yang and
               Akhila Yerukola and
               Jiawei Zhou},
  title     = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
               Metrics},
  journal   = {CoRR},
  volume    = {abs/2102.01672},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.01672},
  archivePrefix = {arXiv},
  eprint    = {2102.01672}
}

Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."

gemma/wiki_lingua_turca_tr

  • Descrizione della configurazione : Wikilingua è un set di dati multilingue su larga scala per la valutazione di sistemi di riepilogo astrattivo interlinguistici.

  • Dimensione del download : 6.73 MiB

  • Dimensione del set di dati: 30.75 MiB

  • Auto-cache ( documentazione ): Sì

  • Divisioni :

Diviso Esempi
'test' 900
'train' 3.148
'validation' 449
  • Struttura delle caratteristiche :
FeaturesDict({
    'gem_id': string,
    'gem_parent_id': string,
    'references': Sequence(string),
    'source': string,
    'source_aligned': Translation({
        'en': Text(shape=(), dtype=string),
        'tr': Text(shape=(), dtype=string),
    }),
    'target': string,
    'target_aligned': Translation({
        'en': Text(shape=(), dtype=string),
        'tr': Text(shape=(), dtype=string),
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
gem_id Tensore corda
gem_parent_id Tensore corda
Riferimenti Sequenza (tensore) (Nessuno,) corda
fonte Tensore corda
source_aligned Traduzione
source_aligned/it Testo corda
source_aligned/tr Testo corda
obbiettivo Tensore corda
target_aligned Traduzione
target_aligned/it Testo corda
target_aligned/tr Testo corda
  • Citazione :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
  author    = {Sebastian Gehrmann and
               Tosin P. Adewumi and
               Karmanya Aggarwal and
               Pawan Sasanka Ammanamanchi and
               Aremu Anuoluwapo and
               Antoine Bosselut and
               Khyathi Raghavi Chandu and
               Miruna{-}Adriana Clinciu and
               Dipanjan Das and
               Kaustubh D. Dhole and
               Wanyu Du and
               Esin Durmus and
               Ondrej Dusek and
               Chris Emezue and
               Varun Gangal and
               Cristina Garbacea and
               Tatsunori Hashimoto and
               Yufang Hou and
               Yacine Jernite and
               Harsh Jhamtani and
               Yangfeng Ji and
               Shailza Jolly and
               Dhruv Kumar and
               Faisal Ladhak and
               Aman Madaan and
               Mounica Maddela and
               Khyati Mahajan and
               Saad Mahamood and
               Bodhisattwa Prasad Majumder and
               Pedro Henrique Martins and
               Angelina McMillan{-}Major and
               Simon Mille and
               Emiel van Miltenburg and
               Moin Nadeem and
               Shashi Narayan and
               Vitaly Nikolaev and
               Rubungo Andre Niyongabo and
               Salomey Osei and
               Ankur P. Parikh and
               Laura Perez{-}Beltrachini and
               Niranjan Ramesh Rao and
               Vikas Raunak and
               Juan Diego Rodriguez and
               Sashank Santhanam and
               Jo{\~{a} }o Sedoc and
               Thibault Sellam and
               Samira Shaikh and
               Anastasia Shimorina and
               Marco Antonio Sobrevilla Cabezudo and
               Hendrik Strobelt and
               Nishant Subramani and
               Wei Xu and
               Diyi Yang and
               Akhila Yerukola and
               Jiawei Zhou},
  title     = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
               Metrics},
  journal   = {CoRR},
  volume    = {abs/2102.01672},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.01672},
  archivePrefix = {arXiv},
  eprint    = {2102.01672}
}

Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."

gem/wiki_lingua_vietnamita_vi

  • Descrizione della configurazione : Wikilingua è un set di dati multilingue su larga scala per la valutazione di sistemi di riepilogo astrattivo interlinguistici.

  • Dimensione del download : 36.27 MiB

  • Dimensione del set di dati: 179.77 MiB

  • Auto-cache ( documentazione ): Sì

  • Divisioni :

Diviso Esempi
'test' 3.917
'train' 13.707
'validation' 1.957
  • Struttura delle caratteristiche :
FeaturesDict({
    'gem_id': string,
    'gem_parent_id': string,
    'references': Sequence(string),
    'source': string,
    'source_aligned': Translation({
        'en': Text(shape=(), dtype=string),
        'vi': Text(shape=(), dtype=string),
    }),
    'target': string,
    'target_aligned': Translation({
        'en': Text(shape=(), dtype=string),
        'vi': Text(shape=(), dtype=string),
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
gem_id Tensore corda
gem_parent_id Tensore corda
Riferimenti Sequenza (tensore) (Nessuno,) corda
fonte Tensore corda
source_aligned Traduzione
source_aligned/en Testo corda
source_aligned/vi Testo corda
obbiettivo Tensore corda
target_aligned Traduzione
target_aligned/it Testo corda
target_aligned/vi Testo corda
  • Citazione :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
  author    = {Sebastian Gehrmann and
               Tosin P. Adewumi and
               Karmanya Aggarwal and
               Pawan Sasanka Ammanamanchi and
               Aremu Anuoluwapo and
               Antoine Bosselut and
               Khyathi Raghavi Chandu and
               Miruna{-}Adriana Clinciu and
               Dipanjan Das and
               Kaustubh D. Dhole and
               Wanyu Du and
               Esin Durmus and
               Ondrej Dusek and
               Chris Emezue and
               Varun Gangal and
               Cristina Garbacea and
               Tatsunori Hashimoto and
               Yufang Hou and
               Yacine Jernite and
               Harsh Jhamtani and
               Yangfeng Ji and
               Shailza Jolly and
               Dhruv Kumar and
               Faisal Ladhak and
               Aman Madaan and
               Mounica Maddela and
               Khyati Mahajan and
               Saad Mahamood and
               Bodhisattwa Prasad Majumder and
               Pedro Henrique Martins and
               Angelina McMillan{-}Major and
               Simon Mille and
               Emiel van Miltenburg and
               Moin Nadeem and
               Shashi Narayan and
               Vitaly Nikolaev and
               Rubungo Andre Niyongabo and
               Salomey Osei and
               Ankur P. Parikh and
               Laura Perez{-}Beltrachini and
               Niranjan Ramesh Rao and
               Vikas Raunak and
               Juan Diego Rodriguez and
               Sashank Santhanam and
               Jo{\~{a} }o Sedoc and
               Thibault Sellam and
               Samira Shaikh and
               Anastasia Shimorina and
               Marco Antonio Sobrevilla Cabezudo and
               Hendrik Strobelt and
               Nishant Subramani and
               Wei Xu and
               Diyi Yang and
               Akhila Yerukola and
               Jiawei Zhou},
  title     = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
               Metrics},
  journal   = {CoRR},
  volume    = {abs/2102.01672},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.01672},
  archivePrefix = {arXiv},
  eprint    = {2102.01672}
}

Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."