- 설명 :
Fashion-MNIST는 60,000개의 예제로 구성된 훈련 세트와 10,000개의 예제로 구성된 테스트 세트로 구성된 Zalando의 기사 이미지 데이터 세트입니다. 각 예는 10개 클래스의 레이블과 연결된 28x28 회색조 이미지입니다.
추가 문서 : 코드 가 포함된 논문 탐색
버전 :
-
3.0.1
(기본값): 릴리스 노트가 없습니다.
-
다운로드 크기 :
29.45 MiB
데이터세트 크기 :
36.42 MiB
자동 캐시 ( 문서 ): 예
분할 :
나뉘다 | 예 |
---|---|
'test' | 10,000 |
'train' | 60,000 |
- 기능 구조 :
FeaturesDict({
'image': Image(shape=(28, 28, 1), dtype=uint8),
'label': ClassLabel(shape=(), dtype=int64, num_classes=10),
})
- 기능 문서 :
특징 | 수업 | 모양 | Dtype | 설명 |
---|---|---|---|---|
특징Dict | ||||
영상 | 영상 | (28, 28, 1) | uint8 | |
상표 | 클래스 라벨 | 정수64 |
감독되는 키 (
as_supervised
doc 참조):('image', 'label')
그림 ( tfds.show_examples ):
- 예 ( tfds.as_dataframe ):
- 인용 :
@article{DBLP:journals/corr/abs-1708-07747,
author = {Han Xiao and
Kashif Rasul and
Roland Vollgraf},
title = {Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
Algorithms},
journal = {CoRR},
volume = {abs/1708.07747},
year = {2017},
url = {http://arxiv.org/abs/1708.07747},
archivePrefix = {arXiv},
eprint = {1708.07747},
timestamp = {Mon, 13 Aug 2018 16:47:27 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/abs-1708-07747},
bibsource = {dblp computer science bibliography, https://dblp.org}
}