- Tanım :
Franka açılış fırınları - yalnızca nokta bulutu + proprio
Ana sayfa : https://ieeexplore.ieee.org/iel7/10160211/10160212/10160747.pdf
Kaynak kodu :
tfds.robotics.rtx.EthAgentAffordances
Sürümler :
-
0.1.0
(varsayılan): İlk sürüm.
-
İndirme boyutu :
Unknown size
Veri kümesi boyutu :
17.27 GiB
Otomatik önbelleğe alınmış ( belgeler ): Hayır
Bölünmeler :
Bölmek | Örnekler |
---|---|
'train' | 118 |
- Özellik yapısı :
FeaturesDict({
'episode_metadata': FeaturesDict({
'file_path': Text(shape=(), dtype=string),
'input_point_cloud': Tensor(shape=(10000, 3), dtype=float16, description=Point cloud (geometry only) of the object at the beginning of the episode (world frame) as a numpy array (10000,3).),
}),
'steps': Dataset({
'action': Tensor(shape=(6,), dtype=float32, description=Robot action, consists of [end-effector velocity (v_x,v_y,v_z,omega_x,omega_y,omega_z) in world frame),
'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
'language_instruction': Text(shape=(), dtype=string),
'observation': FeaturesDict({
'image': Image(shape=(64, 64, 3), dtype=uint8, description=Main camera RGB observation. Not available for this dataset, will be set to np.zeros.),
'input_point_cloud': Tensor(shape=(10000, 3), dtype=float16, description=Point cloud (geometry only) of the object at the beginning of the episode (world frame) as a numpy array (10000,3).),
'state': Tensor(shape=(8,), dtype=float32, description=State, consists of [end-effector pose (x,y,z,yaw,pitch,roll) in world frame, 1x gripper open/close, 1x door opening angle].),
}),
'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
}),
})
- Özellik belgeleri :
Özellik | Sınıf | Şekil | Dtipi | Tanım |
---|---|---|---|---|
ÖzelliklerDict | ||||
bölüm_meta verileri | ÖzelliklerDict | |||
bölüm_metadata/dosya_yolu | Metin | sicim | Orijinal veri dosyasının yolu. | |
bölüm_metadata/input_point_cloud | Tensör | (10000, 3) | şamandıra16 | Numpy dizisi (10000,3) olarak bölümün başlangıcındaki (dünya çerçevesi) nesnenin nokta bulutu (yalnızca geometri). |
adımlar | Veri kümesi | |||
adımlar/eylem | Tensör | (6,) | kayan nokta32 | Robot eylemi, dünya çerçevesindeki [son efektör hızından (v_x,v_y,v_z,omega_x,omega_y,omega_z) oluşur |
adımlar/indirim | Skaler | kayan nokta32 | Sağlanırsa indirim, varsayılan olarak 1'dir. | |
adımlar/is_first | Tensör | bool | ||
adımlar/is_last | Tensör | bool | ||
adımlar/is_terminal | Tensör | bool | ||
adımlar/dil_embedding | Tensör | (512,) | kayan nokta32 | Kona dili yerleştirme. Bkz. https://tfhub.dev/google/universal-sentence-encoder-large/5 |
adımlar/language_instruction | Metin | sicim | Dil Öğretimi. | |
adımlar/gözlem | ÖzelliklerDict | |||
adımlar/gözlem/görüntü | Resim | (64, 64, 3) | uint8 | Ana kamera RGB gözlemi. Bu veri kümesi için mevcut değil, np.zero olarak ayarlanacak. |
adımlar/gözlem/input_point_cloud | Tensör | (10000, 3) | şamandıra16 | Numpy dizisi (10000,3) olarak bölümün başlangıcındaki (dünya çerçevesi) nesnenin nokta bulutu (yalnızca geometri). |
adımlar/gözlem/durum | Tensör | (8,) | kayan nokta32 | Durum, [dünya çerçevesindeki uç efektör pozu (x,y,z,yaw,pitch,roll), 1x tutucu açık/kapalı, 1x kapı açılma açısı]'ndan oluşur. |
adımlar/ödül | Skaler | kayan nokta32 | Sağlandığı takdirde ödül, demolar için son adımda 1. |
Denetlenen anahtarlar (
as_supervised
belgesine bakın):None
Şekil ( tfds.show_examples ): Desteklenmiyor.
Örnekler ( tfds.as_dataframe ):
- Alıntı :
@inproceedings{schiavi2023learning,
title={Learning agent-aware affordances for closed-loop interaction with articulated objects},
author={Schiavi, Giulio and Wulkop, Paula and Rizzi, Giuseppe and Ott, Lionel and Siegwart, Roland and Chung, Jen Jen},
booktitle={2023 IEEE International Conference on Robotics and Automation (ICRA)},
pages={5916--5922},
year={2023},
organization={IEEE}
}