e2e_cleaned

  • Açıklama :

Temizlenmiş MR'lerle E2E NLG Challenge verilerinin güncelleme sürümü. E2E verileri, restoran alanında diyalog eylemine dayalı anlam gösterimi (MR) ve doğal dilde 5 adede kadar referans içerir; bu, kişinin tahmin etmesi gereken şeydir.

Bölmek örnekler
'test' 4.693
'train' 33.525
'validation' 4.299
  • Özellik yapısı :
FeaturesDict({
    'input_text': FeaturesDict({
        'table': Sequence({
            'column_header': string,
            'content': string,
            'row_number': int16,
        }),
    }),
    'target_text': string,
})
  • Özellik belgeleri :
Özellik Sınıf Şekil Dtipi Tanım
ÖzelliklerDict
giriş metni ÖzelliklerDict
girdi_metni/tablo Sekans
girdi_metni/tablo/sütun_başlığı tensör sicim
girdi_metni/tablo/içerik tensör sicim
girdi_metni/tablo/satır_numarası tensör int16
hedef_metin tensör sicim
  • Alıntı :
@inproceedings{dusek-etal-2019-semantic,
    title = "Semantic Noise Matters for Neural Natural Language Generation",
    author = "Du{\v{s} }ek, Ond{\v{r} }ej  and
      Howcroft, David M.  and
      Rieser, Verena",
    booktitle = "Proceedings of the 12th International Conference on Natural Language Generation",
    month = oct # "{--}" # nov,
    year = "2019",
    address = "Tokyo, Japan",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/W19-8652",
    doi = "10.18653/v1/W19-8652",
    pages = "421--426",
    abstract = "Neural natural language generation (NNLG) systems are known for their pathological outputs, i.e. generating text which is unrelated to the input specification. In this paper, we show the impact of semantic noise on state-of-the-art NNLG models which implement different semantic control mechanisms. We find that cleaned data can improve semantic correctness by up to 97{\%}, while maintaining fluency. We also find that the most common error is omitting information, rather than hallucination.",
}