d4rl_mujoco_walker2d

  • Descrizione :

D4RL è un punto di riferimento open source per l'apprendimento per rinforzo offline. Fornisce ambienti e set di dati standardizzati per algoritmi di training e benchmarking.

I set di dati seguono il formato RLDS per rappresentare passaggi ed episodi.

@misc{fu2020d4rl,
    title={D4RL: Datasets for Deep Data-Driven Reinforcement Learning},
    author={Justin Fu and Aviral Kumar and Ofir Nachum and George Tucker and Sergey Levine},
    year={2020},
    eprint={2004.07219},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

d4rl_mujoco_walker2d/v0-expert (configurazione predefinita)

  • Dimensione download : 78.41 MiB

  • Dimensione del set di dati : 98.64 MiB

  • Memorizzazione nella cache automatica ( documentazione ): sì

  • Divide :

Diviso Esempi
'train' 1.628
  • Struttura delle caratteristiche :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=float32),
        'discount': float32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(17,), dtype=float32),
        'reward': float32,
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
passi Set di dati
passi/azione Tensore (6,) float32
passi/sconto Tensore float32
passi/è_primo Tensore bool
passi/è_ultimo Tensore bool
passi/è_terminale Tensore bool
passi/osservazione Tensore (17,) float32
passi/ricompensa Tensore float32

d4rl_mujoco_walker2d/v0-medium

  • Dimensione download : 80.83 MiB

  • Dimensione del set di dati : 99.72 MiB

  • Memorizzazione nella cache automatica ( documentazione ): sì

  • Divide :

Diviso Esempi
'train' 5.315
  • Struttura delle caratteristiche :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=float32),
        'discount': float32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(17,), dtype=float32),
        'reward': float32,
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
passi Set di dati
passi/azione Tensore (6,) float32
passi/sconto Tensore float32
passi/è_primo Tensore bool
passi/è_ultimo Tensore bool
passi/è_terminale Tensore bool
passi/osservazione Tensore (17,) float32
passi/ricompensa Tensore float32

d4rl_mujoco_walker2d/v0-medium-expert

  • Dimensione download : 159.24 MiB

  • Dimensione del set di dati : 198.36 MiB

  • Memorizzazione nella cache automatica ( documentazione ): solo quando shuffle_files=False (train)

  • Divide :

Diviso Esempi
'train' 6.943
  • Struttura delle caratteristiche :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=float32),
        'discount': float32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(17,), dtype=float32),
        'reward': float32,
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
passi Set di dati
passi/azione Tensore (6,) float32
passi/sconto Tensore float32
passi/è_primo Tensore bool
passi/è_ultimo Tensore bool
passi/è_terminale Tensore bool
passi/osservazione Tensore (17,) float32
passi/ricompensa Tensore float32

d4rl_mujoco_walker2d/v0-mixed

  • Dimensione download : 8.42 MiB

  • Dimensione del set di dati : 10.06 MiB

  • Memorizzazione nella cache automatica ( documentazione ): sì

  • Divide :

Diviso Esempi
'train' 501
  • Struttura delle caratteristiche :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=float32),
        'discount': float32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(17,), dtype=float32),
        'reward': float32,
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
passi Set di dati
passi/azione Tensore (6,) float32
passi/sconto Tensore float32
passi/è_primo Tensore bool
passi/è_ultimo Tensore bool
passi/è_terminale Tensore bool
passi/osservazione Tensore (17,) float32
passi/ricompensa Tensore float32

d4rl_mujoco_walker2d/v0-random

  • Dimensione download : 78.41 MiB

  • Dimensione del set di dati : 112.04 MiB

  • Memorizzazione nella cache automatica ( documentazione ): sì

  • Divide :

Diviso Esempi
'train' 50.988
  • Struttura delle caratteristiche :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=float32),
        'discount': float32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(17,), dtype=float32),
        'reward': float32,
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
passi Set di dati
passi/azione Tensore (6,) float32
passi/sconto Tensore float32
passi/è_primo Tensore bool
passi/è_ultimo Tensore bool
passi/è_terminale Tensore bool
passi/osservazione Tensore (17,) float32
passi/ricompensa Tensore float32

d4rl_mujoco_walker2d/v1-expert

  • Dimensione download : 143.06 MiB

  • Dimensione del set di dati : 452.72 MiB

  • Memorizzazione nella cache automatica ( documentazione ): No

  • Divide :

Diviso Esempi
'train' 1.003
  • Struttura delle caratteristiche :
FeaturesDict({
    'algorithm': string,
    'iteration': int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 17), dtype=float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 256), dtype=float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(6,), dtype=float32),
            'weight': Tensor(shape=(6, 256), dtype=float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(6,), dtype=float32),
            'weight': Tensor(shape=(6, 256), dtype=float32),
        }),
        'nonlinearity': string,
        'output_distribution': string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float32,
            'qpos': Tensor(shape=(9,), dtype=float32),
            'qvel': Tensor(shape=(9,), dtype=float32),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(17,), dtype=float32),
        'reward': float32,
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
algoritmo Tensore corda
iterazione Tensore int32
politica CaratteristicheDict
polizza/fc0 CaratteristicheDict
policy/fc0/bias Tensore (256,) float32
politica/fc0/peso Tensore (256, 17) float32
politica/fc1 CaratteristicheDict
policy/fc1/bias Tensore (256,) float32
politica/fc1/peso Tensore (256, 256) float32
politica/last_fc CaratteristicheDict
policy/last_fc/bias Tensore (6,) float32
politica/last_fc/peso Tensore (6, 256) float32
policy/last_fc_log_std CaratteristicheDict
policy/last_fc_log_std/bias Tensore (6,) float32
policy/last_fc_log_std/weight Tensore (6, 256) float32
politica/non linearità Tensore corda
politica/distribuzione_output Tensore corda
passi Set di dati
passi/azione Tensore (6,) float32
passi/sconto Tensore float32
passaggi/informazioni CaratteristicheDict
passaggi/info/action_log_probs Tensore float32
passi/informazioni/qpos Tensore (9,) float32
passaggi/informazioni/qvel Tensore (9,) float32
passi/è_primo Tensore bool
passi/è_ultimo Tensore bool
passi/è_terminale Tensore bool
passi/osservazione Tensore (17,) float32
passi/ricompensa Tensore float32

d4rl_mujoco_walker2d/v1-medium

  • Dimensione download : 144.23 MiB

  • Dimensione del set di dati : 510.08 MiB

  • Memorizzazione nella cache automatica ( documentazione ): No

  • Divide :

Diviso Esempi
'train' 1.207
  • Struttura delle caratteristiche :
FeaturesDict({
    'algorithm': string,
    'iteration': int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 17), dtype=float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 256), dtype=float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(6,), dtype=float32),
            'weight': Tensor(shape=(6, 256), dtype=float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(6,), dtype=float32),
            'weight': Tensor(shape=(6, 256), dtype=float32),
        }),
        'nonlinearity': string,
        'output_distribution': string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float32,
            'qpos': Tensor(shape=(9,), dtype=float32),
            'qvel': Tensor(shape=(9,), dtype=float32),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(17,), dtype=float32),
        'reward': float32,
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
algoritmo Tensore corda
iterazione Tensore int32
politica CaratteristicheDict
polizza/fc0 CaratteristicheDict
policy/fc0/bias Tensore (256,) float32
politica/fc0/peso Tensore (256, 17) float32
politica/fc1 CaratteristicheDict
policy/fc1/bias Tensore (256,) float32
politica/fc1/peso Tensore (256, 256) float32
politica/last_fc CaratteristicheDict
policy/last_fc/bias Tensore (6,) float32
politica/last_fc/peso Tensore (6, 256) float32
policy/last_fc_log_std CaratteristicheDict
policy/last_fc_log_std/bias Tensore (6,) float32
policy/last_fc_log_std/weight Tensore (6, 256) float32
politica/non linearità Tensore corda
politica/distribuzione_output Tensore corda
passi Set di dati
passi/azione Tensore (6,) float32
passi/sconto Tensore float32
passaggi/informazioni CaratteristicheDict
passaggi/info/action_log_probs Tensore float32
passi/informazioni/qpos Tensore (9,) float32
passaggi/informazioni/qvel Tensore (9,) float32
passi/è_primo Tensore bool
passi/è_ultimo Tensore bool
passi/è_terminale Tensore bool
passi/osservazione Tensore (17,) float32
passi/ricompensa Tensore float32

d4rl_mujoco_walker2d/v1-medium-expert

  • Dimensione download : 286.69 MiB

  • Dimensione del set di dati : 342.46 MiB

  • Memorizzazione nella cache automatica ( documentazione ): No

  • Divide :

Diviso Esempi
'train' 2.209
  • Struttura delle caratteristiche :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float32,
            'qpos': Tensor(shape=(9,), dtype=float32),
            'qvel': Tensor(shape=(9,), dtype=float32),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(17,), dtype=float32),
        'reward': float32,
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
passi Set di dati
passi/azione Tensore (6,) float32
passi/sconto Tensore float32
passaggi/informazioni CaratteristicheDict
passaggi/info/action_log_probs Tensore float32
passi/informazioni/qpos Tensore (9,) float32
passaggi/informazioni/qvel Tensore (9,) float32
passi/è_primo Tensore bool
passi/è_ultimo Tensore bool
passi/è_terminale Tensore bool
passi/osservazione Tensore (17,) float32
passi/ricompensa Tensore float32

d4rl_mujoco_walker2d/v1-medium-replay

  • Dimensione download : 84.37 MiB

  • Dimensione del set di dati : 52.10 MiB

  • Memorizzazione nella cache automatica ( documentazione ): sì

  • Divide :

Diviso Esempi
'train' 1.093
  • Struttura delle caratteristiche :
FeaturesDict({
    'algorithm': string,
    'iteration': int32,
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=float64),
        'discount': float64,
        'infos': FeaturesDict({
            'action_log_probs': float64,
            'qpos': Tensor(shape=(9,), dtype=float64),
            'qvel': Tensor(shape=(9,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(17,), dtype=float64),
        'reward': float64,
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
algoritmo Tensore corda
iterazione Tensore int32
passi Set di dati
passi/azione Tensore (6,) float64
passi/sconto Tensore float64
passaggi/informazioni CaratteristicheDict
passaggi/info/action_log_probs Tensore float64
passi/informazioni/qpos Tensore (9,) float64
passaggi/informazioni/qvel Tensore (9,) float64
passi/è_primo Tensore bool
passi/è_ultimo Tensore bool
passi/è_terminale Tensore bool
passi/osservazione Tensore (17,) float64
passi/ricompensa Tensore float64

d4rl_mujoco_walker2d/v1-full-replay

  • Dimensione download : 278.95 MiB

  • Dimensione del set di dati : 171.66 MiB

  • Memorizzazione nella cache automatica ( documentazione ): solo quando shuffle_files=False (train)

  • Divide :

Diviso Esempi
'train' 1.888
  • Struttura delle caratteristiche :
FeaturesDict({
    'algorithm': string,
    'iteration': int32,
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=float64),
        'discount': float64,
        'infos': FeaturesDict({
            'action_log_probs': float64,
            'qpos': Tensor(shape=(9,), dtype=float64),
            'qvel': Tensor(shape=(9,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(17,), dtype=float64),
        'reward': float64,
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
algoritmo Tensore corda
iterazione Tensore int32
passi Set di dati
passi/azione Tensore (6,) float64
passi/sconto Tensore float64
passaggi/informazioni CaratteristicheDict
passaggi/infos/action_log_probs Tensore float64
passi/informazioni/qpos Tensore (9,) float64
passaggi/informazioni/qvel Tensore (9,) float64
passi/è_primo Tensore bool
passi/è_ultimo Tensore bool
passi/è_terminale Tensore bool
passi/osservazione Tensore (17,) float64
passi/ricompensa Tensore float64

d4rl_mujoco_walker2d/v1-random

  • Dimensione download : 132.36 MiB

  • Dimensione del set di dati : 192.06 MiB

  • Memorizzazione nella cache automatica ( documentazione ): solo quando shuffle_files=False (train)

  • Divide :

Diviso Esempi
'train' 48.790
  • Struttura delle caratteristiche :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float32,
            'qpos': Tensor(shape=(9,), dtype=float32),
            'qvel': Tensor(shape=(9,), dtype=float32),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(17,), dtype=float32),
        'reward': float32,
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
passi Set di dati
passi/azione Tensore (6,) float32
passi/sconto Tensore float32
passaggi/informazioni CaratteristicheDict
passaggi/info/action_log_probs Tensore float32
passi/informazioni/qpos Tensore (9,) float32
passaggi/informazioni/qvel Tensore (9,) float32
passi/è_primo Tensore bool
passi/è_ultimo Tensore bool
passi/è_terminale Tensore bool
passi/osservazione Tensore (17,) float32
passi/ricompensa Tensore float32

d4rl_mujoco_walker2d/v2-expert

  • Dimensione download : 219.89 MiB

  • Dimensione del set di dati : 452.16 MiB

  • Memorizzazione nella cache automatica ( documentazione ): No

  • Divide :

Diviso Esempi
'train' 1.001
  • Struttura delle caratteristiche :
FeaturesDict({
    'algorithm': string,
    'iteration': int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 17), dtype=float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 256), dtype=float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(6,), dtype=float32),
            'weight': Tensor(shape=(6, 256), dtype=float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(6,), dtype=float32),
            'weight': Tensor(shape=(6, 256), dtype=float32),
        }),
        'nonlinearity': string,
        'output_distribution': string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float64,
            'qpos': Tensor(shape=(9,), dtype=float64),
            'qvel': Tensor(shape=(9,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(17,), dtype=float32),
        'reward': float32,
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
algoritmo Tensore corda
iterazione Tensore int32
politica CaratteristicheDict
polizza/fc0 CaratteristicheDict
policy/fc0/bias Tensore (256,) float32
politica/fc0/peso Tensore (256, 17) float32
politica/fc1 CaratteristicheDict
policy/fc1/bias Tensore (256,) float32
politica/fc1/peso Tensore (256, 256) float32
politica/last_fc CaratteristicheDict
policy/last_fc/bias Tensore (6,) float32
politica/last_fc/peso Tensore (6, 256) float32
policy/last_fc_log_std CaratteristicheDict
policy/last_fc_log_std/bias Tensore (6,) float32
policy/last_fc_log_std/weight Tensore (6, 256) float32
politica/non linearità Tensore corda
politica/distribuzione_output Tensore corda
passi Set di dati
passi/azione Tensore (6,) float32
passi/sconto Tensore float32
passaggi/informazioni CaratteristicheDict
passaggi/infos/action_log_probs Tensore float64
passi/informazioni/qpos Tensore (9,) float64
passaggi/informazioni/qvel Tensore (9,) float64
passi/è_primo Tensore bool
passi/è_ultimo Tensore bool
passi/è_terminale Tensore bool
passi/osservazione Tensore (17,) float32
passi/ricompensa Tensore float32

d4rl_mujoco_walker2d/v2-full-replay

  • Dimensione download : 271.91 MiB

  • Dimensione del set di dati : 171.66 MiB

  • Memorizzazione nella cache automatica ( documentazione ): solo quando shuffle_files=False (train)

  • Divide :

Diviso Esempi
'train' 1.888
  • Struttura delle caratteristiche :
FeaturesDict({
    'algorithm': string,
    'iteration': int32,
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float64,
            'qpos': Tensor(shape=(9,), dtype=float64),
            'qvel': Tensor(shape=(9,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(17,), dtype=float32),
        'reward': float32,
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
algoritmo Tensore corda
iterazione Tensore int32
passi Set di dati
passi/azione Tensore (6,) float32
passi/sconto Tensore float32
passaggi/informazioni CaratteristicheDict
passaggi/info/action_log_probs Tensore float64
passi/informazioni/qpos Tensore (9,) float64
passaggi/informazioni/qvel Tensore (9,) float64
passi/è_primo Tensore bool
passi/è_ultimo Tensore bool
passi/è_terminale Tensore bool
passi/osservazione Tensore (17,) float32
passi/ricompensa Tensore float32

d4rl_mujoco_walker2d/v2-medium

  • Dimensione download : 221.50 MiB

  • Dimensione del set di dati : 505.58 MiB

  • Memorizzazione nella cache automatica ( documentazione ): No

  • Divide :

Diviso Esempi
'train' 1.191
  • Struttura delle caratteristiche :
FeaturesDict({
    'algorithm': string,
    'iteration': int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 17), dtype=float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 256), dtype=float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(6,), dtype=float32),
            'weight': Tensor(shape=(6, 256), dtype=float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(6,), dtype=float32),
            'weight': Tensor(shape=(6, 256), dtype=float32),
        }),
        'nonlinearity': string,
        'output_distribution': string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float64,
            'qpos': Tensor(shape=(9,), dtype=float64),
            'qvel': Tensor(shape=(9,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(17,), dtype=float32),
        'reward': float32,
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
algoritmo Tensore corda
iterazione Tensore int32
politica CaratteristicheDict
polizza/fc0 CaratteristicheDict
policy/fc0/bias Tensore (256,) float32
politica/fc0/peso Tensore (256, 17) float32
politica/fc1 CaratteristicheDict
policy/fc1/bias Tensore (256,) float32
politica/fc1/peso Tensore (256, 256) float32
politica/last_fc CaratteristicheDict
policy/last_fc/bias Tensore (6,) float32
politica/last_fc/peso Tensore (6, 256) float32
policy/last_fc_log_std CaratteristicheDict
policy/last_fc_log_std/bias Tensore (6,) float32
policy/last_fc_log_std/weight Tensore (6, 256) float32
politica/non linearità Tensore corda
politica/distribuzione_output Tensore corda
passi Set di dati
passi/azione Tensore (6,) float32
passi/sconto Tensore float32
passaggi/informazioni CaratteristicheDict
passaggi/info/action_log_probs Tensore float64
passi/informazioni/qpos Tensore (9,) float64
passaggi/informazioni/qvel Tensore (9,) float64
passi/è_primo Tensore bool
passi/è_ultimo Tensore bool
passi/è_terminale Tensore bool
passi/osservazione Tensore (17,) float32
passi/ricompensa Tensore float32

d4rl_mujoco_walker2d/v2-medium-expert

  • Dimensione download : 440.79 MiB

  • Dimensione del set di dati : 342.45 MiB

  • Memorizzazione nella cache automatica ( documentazione ): No

  • Divide :

Diviso Esempi
'train' 2.191
  • Struttura delle caratteristiche :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float64,
            'qpos': Tensor(shape=(9,), dtype=float64),
            'qvel': Tensor(shape=(9,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(17,), dtype=float32),
        'reward': float32,
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
passi Set di dati
passi/azione Tensore (6,) float32
passi/sconto Tensore float32
passaggi/informazioni CaratteristicheDict
passaggi/info/action_log_probs Tensore float64
passi/informazioni/qpos Tensore (9,) float64
passaggi/informazioni/qvel Tensore (9,) float64
passi/è_primo Tensore bool
passi/è_ultimo Tensore bool
passi/è_terminale Tensore bool
passi/osservazione Tensore (17,) float32
passi/ricompensa Tensore float32

d4rl_mujoco_walker2d/v2-medium-replay

  • Dimensione download : 82.32 MiB

  • Dimensione del set di dati : 52.10 MiB

  • Memorizzazione nella cache automatica ( documentazione ): sì

  • Divide :

Diviso Esempi
'train' 1.093
  • Struttura delle caratteristiche :
FeaturesDict({
    'algorithm': string,
    'iteration': int32,
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float64,
            'qpos': Tensor(shape=(9,), dtype=float64),
            'qvel': Tensor(shape=(9,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(17,), dtype=float32),
        'reward': float32,
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
algoritmo Tensore corda
iterazione Tensore int32
passi Set di dati
passi/azione Tensore (6,) float32
passi/sconto Tensore float32
passaggi/informazioni CaratteristicheDict
passaggi/info/action_log_probs Tensore float64
passi/informazioni/qpos Tensore (9,) float64
passaggi/informazioni/qvel Tensore (9,) float64
passi/è_primo Tensore bool
passi/è_ultimo Tensore bool
passi/è_terminale Tensore bool
passi/osservazione Tensore (17,) float32
passi/ricompensa Tensore float32

d4rl_mujoco_walker2d/v2-random

  • Dimensione download : 206.10 MiB

  • Dimensione del set di dati : 192.11 MiB

  • Memorizzazione nella cache automatica ( documentazione ): solo quando shuffle_files=False (train)

  • Divide :

Diviso Esempi
'train' 48.908
  • Struttura delle caratteristiche :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float64,
            'qpos': Tensor(shape=(9,), dtype=float64),
            'qvel': Tensor(shape=(9,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(17,), dtype=float32),
        'reward': float32,
    }),
})
  • Documentazione delle funzionalità :
Caratteristica Classe Forma Tipo D Descrizione
CaratteristicheDict
passi Set di dati
passi/azione Tensore (6,) float32
passi/sconto Tensore float32
passaggi/informazioni CaratteristicheDict
passaggi/info/action_log_probs Tensore float64
passi/informazioni/qpos Tensore (9,) float64
passaggi/informazioni/qvel Tensore (9,) float64
passi/è_primo Tensore bool
passi/è_ultimo Tensore bool
passi/è_terminale Tensore bool
passi/osservazione Tensore (17,) float32
passi/ricompensa Tensore float32