d4rl_mujoco_ant,d4rl_mujoco_ant

  • คำอธิบาย :

D4RL เป็นเกณฑ์มาตรฐานแบบโอเพ่นซอร์สสำหรับการเรียนรู้แบบเสริมกำลังแบบออฟไลน์ โดยจัดเตรียมสภาพแวดล้อมและชุดข้อมูลที่เป็นมาตรฐานสำหรับอัลกอริธึมการฝึกอบรมและการวัดประสิทธิภาพ

ชุดข้อมูลเป็นไปตาม รูปแบบ RLDS เพื่อแสดงขั้นตอนและตอน

@misc{fu2020d4rl,
    title={D4RL: Datasets for Deep Data-Driven Reinforcement Learning},
    author={Justin Fu and Aviral Kumar and Ofir Nachum and George Tucker and Sergey Levine},
    year={2020},
    eprint={2004.07219},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

d4rl_mujoco_ant/v0-ผู้เชี่ยวชาญ (การกำหนดค่าเริ่มต้น)

  • ขนาดดาวน์โหลด : 131.34 MiB

  • ขนาดชุดข้อมูล : 464.94 MiB

  • แคชอัตโนมัติ ( เอกสาร ): No

  • แยก :

แยก ตัวอย่าง
'train' 1,288
  • โครงสร้างคุณสมบัติ :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32),
        'discount': float32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float32),
        'reward': float32,
    }),
})
  • เอกสารคุณสมบัติ :
คุณสมบัติ ระดับ รูปร่าง ประเภทD คำอธิบาย
คุณสมบัติDict
ขั้นตอน ชุดข้อมูล
ขั้นตอน/การดำเนินการ เทนเซอร์ (8,) ลอย32
ขั้นตอน/ส่วนลด เทนเซอร์ ลอย32
ขั้นตอน/is_first เทนเซอร์ บูล
ขั้นตอน/is_last เทนเซอร์ บูล
ขั้นตอน/is_terminal เทนเซอร์ บูล
ขั้นตอน/การสังเกต เทนเซอร์ (111,) ลอย32
ขั้นตอน/รางวัล เทนเซอร์ ลอย32

d4rl_mujoco_ant/v0-ปานกลาง

  • ขนาดดาวน์โหลด : 131.39 MiB

  • ขนาดชุดข้อมูล : 464.78 MiB

  • แคชอัตโนมัติ ( เอกสาร ): No

  • แยก :

แยก ตัวอย่าง
'train' 1,122
  • โครงสร้างคุณสมบัติ :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32),
        'discount': float32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float32),
        'reward': float32,
    }),
})
  • เอกสารคุณสมบัติ :
คุณสมบัติ ระดับ รูปร่าง ประเภทD คำอธิบาย
คุณสมบัติDict
ขั้นตอน ชุดข้อมูล
ขั้นตอน/การดำเนินการ เทนเซอร์ (8,) ลอย32
ขั้นตอน/ส่วนลด เทนเซอร์ ลอย32
ขั้นตอน/is_first เทนเซอร์ บูล
ขั้นตอน/is_last เทนเซอร์ บูล
ขั้นตอน/is_terminal เทนเซอร์ บูล
ขั้นตอน/การสังเกต เทนเซอร์ (111,) ลอย32
ขั้นตอน/รางวัล เทนเซอร์ ลอย32

d4rl_mujoco_ant/v0-ผู้เชี่ยวชาญระดับกลาง

  • ขนาดดาวน์โหลด : 262.73 MiB

  • ขนาดชุดข้อมูล : 929.71 MiB

  • แคชอัตโนมัติ ( เอกสาร ): No

  • แยก :

แยก ตัวอย่าง
'train' 2,410
  • โครงสร้างคุณสมบัติ :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32),
        'discount': float32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float32),
        'reward': float32,
    }),
})
  • เอกสารคุณสมบัติ :
คุณสมบัติ ระดับ รูปร่าง ประเภทD คำอธิบาย
คุณสมบัติDict
ขั้นตอน ชุดข้อมูล
ขั้นตอน/การดำเนินการ เทนเซอร์ (8,) ลอย32
ขั้นตอน/ส่วนลด เทนเซอร์ ลอย32
ขั้นตอน/is_first เทนเซอร์ บูล
ขั้นตอน/is_last เทนเซอร์ บูล
ขั้นตอน/is_terminal เทนเซอร์ บูล
ขั้นตอน/การสังเกต เทนเซอร์ (111,) ลอย32
ขั้นตอน/รางวัล เทนเซอร์ ลอย32

d4rl_mujoco_ant/v0-ผสม

  • ขนาดดาวน์โหลด : 104.63 MiB

  • ขนาดชุดข้อมูล : 464.93 MiB

  • แคชอัตโนมัติ ( เอกสาร ): No

  • แยก :

แยก ตัวอย่าง
'train' 1,320
  • โครงสร้างคุณสมบัติ :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32),
        'discount': float32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float32),
        'reward': float32,
    }),
})
  • เอกสารคุณสมบัติ :
คุณสมบัติ ระดับ รูปร่าง ประเภทD คำอธิบาย
คุณสมบัติDict
ขั้นตอน ชุดข้อมูล
ขั้นตอน/การดำเนินการ เทนเซอร์ (8,) ลอย32
ขั้นตอน/ส่วนลด เทนเซอร์ ลอย32
ขั้นตอน/is_first เทนเซอร์ บูล
ขั้นตอน/is_last เทนเซอร์ บูล
ขั้นตอน/is_terminal เทนเซอร์ บูล
ขั้นตอน/การสังเกต เทนเซอร์ (111,) ลอย32
ขั้นตอน/รางวัล เทนเซอร์ ลอย32

d4rl_mujoco_ant/v0-สุ่ม

  • ขนาดดาวน์โหลด : 139.50 MiB

  • ขนาดชุดข้อมูล : 464.97 MiB

  • แคชอัตโนมัติ ( เอกสาร ): No

  • แยก :

แยก ตัวอย่าง
'train' 1,377
  • โครงสร้างคุณสมบัติ :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32),
        'discount': float32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float32),
        'reward': float32,
    }),
})
  • เอกสารคุณสมบัติ :
คุณสมบัติ ระดับ รูปร่าง ประเภทD คำอธิบาย
คุณสมบัติDict
ขั้นตอน ชุดข้อมูล
ขั้นตอน/การดำเนินการ เทนเซอร์ (8,) ลอย32
ขั้นตอน/ส่วนลด เทนเซอร์ ลอย32
ขั้นตอน/is_first เทนเซอร์ บูล
ขั้นตอน/is_last เทนเซอร์ บูล
ขั้นตอน/is_terminal เทนเซอร์ บูล
ขั้นตอน/การสังเกต เทนเซอร์ (111,) ลอย32
ขั้นตอน/รางวัล เทนเซอร์ ลอย32

d4rl_mujoco_ant/v1-ผู้เชี่ยวชาญ

  • ขนาดดาวน์โหลด : 220.72 MiB

  • ขนาดชุดข้อมูล : 968.63 MiB

  • แคชอัตโนมัติ ( เอกสาร ): No

  • แยก :

แยก ตัวอย่าง
'train' 1,033
  • โครงสร้างคุณสมบัติ :
FeaturesDict({
    'algorithm': string,
    'iteration': int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 111), dtype=float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 256), dtype=float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(8,), dtype=float32),
            'weight': Tensor(shape=(8, 256), dtype=float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(8,), dtype=float32),
            'weight': Tensor(shape=(8, 256), dtype=float32),
        }),
        'nonlinearity': string,
        'output_distribution': string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float32,
            'qpos': Tensor(shape=(15,), dtype=float32),
            'qvel': Tensor(shape=(14,), dtype=float32),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float32),
        'reward': float32,
    }),
})
  • เอกสารคุณสมบัติ :
คุณสมบัติ ระดับ รูปร่าง ประเภทD คำอธิบาย
คุณสมบัติDict
อัลกอริทึม เทนเซอร์ เชือก
การวนซ้ำ เทนเซอร์ int32
นโยบาย คุณสมบัติDict
นโยบาย/fc0 คุณสมบัติDict
นโยบาย/fc0/อคติ เทนเซอร์ (256,) ลอย32
นโยบาย/fc0/น้ำหนัก เทนเซอร์ (256, 111) ลอย32
นโยบาย/fc1 คุณสมบัติDict
นโยบาย/fc1/อคติ เทนเซอร์ (256,) ลอย32
นโยบาย/fc1/น้ำหนัก เทนเซอร์ (256, 256) ลอย32
นโยบาย/last_fc คุณสมบัติDict
นโยบาย/last_fc/อคติ เทนเซอร์ (8,) ลอย32
นโยบาย/last_fc/น้ำหนัก เทนเซอร์ (8, 256) ลอย32
นโยบาย/last_fc_log_std คุณสมบัติDict
นโยบาย/last_fc_log_std/อคติ เทนเซอร์ (8,) ลอย32
นโยบาย/last_fc_log_std/น้ำหนัก เทนเซอร์ (8, 256) ลอย32
นโยบาย/ความไม่เชิงเส้น เทนเซอร์ เชือก
นโยบาย/output_distribution เทนเซอร์ เชือก
ขั้นตอน ชุดข้อมูล
ขั้นตอน/การดำเนินการ เทนเซอร์ (8,) ลอย32
ขั้นตอน/ส่วนลด เทนเซอร์ ลอย32
ขั้นตอน/ข้อมูล คุณสมบัติDict
ขั้นตอน/ข้อมูล/action_log_probs เทนเซอร์ ลอย32
ขั้นตอน/ข้อมูล/qpos เทนเซอร์ (15,) ลอย32
ขั้นตอน/ข้อมูล/qvel เทนเซอร์ (14,) ลอย32
ขั้นตอน/is_first เทนเซอร์ บูล
ขั้นตอน/is_last เทนเซอร์ บูล
ขั้นตอน/is_terminal เทนเซอร์ บูล
ขั้นตอน/การสังเกต เทนเซอร์ (111,) ลอย32
ขั้นตอน/รางวัล เทนเซอร์ ลอย32

d4rl_mujoco_ant/v1-ปานกลาง

  • ขนาดดาวน์โหลด : 222.39 MiB

  • ขนาดชุดข้อมูล : 1023.71 MiB

  • แคชอัตโนมัติ ( เอกสาร ): No

  • แยก :

แยก ตัวอย่าง
'train' 1,179
  • โครงสร้างคุณสมบัติ :
FeaturesDict({
    'algorithm': string,
    'iteration': int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 111), dtype=float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 256), dtype=float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(8,), dtype=float32),
            'weight': Tensor(shape=(8, 256), dtype=float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(8,), dtype=float32),
            'weight': Tensor(shape=(8, 256), dtype=float32),
        }),
        'nonlinearity': string,
        'output_distribution': string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float32,
            'qpos': Tensor(shape=(15,), dtype=float32),
            'qvel': Tensor(shape=(14,), dtype=float32),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float32),
        'reward': float32,
    }),
})
  • เอกสารคุณสมบัติ :
คุณสมบัติ ระดับ รูปร่าง ประเภทD คำอธิบาย
คุณสมบัติDict
อัลกอริทึม เทนเซอร์ เชือก
การวนซ้ำ เทนเซอร์ int32
นโยบาย คุณสมบัติDict
นโยบาย/fc0 คุณสมบัติDict
นโยบาย/fc0/อคติ เทนเซอร์ (256,) ลอย32
นโยบาย/fc0/น้ำหนัก เทนเซอร์ (256, 111) ลอย32
นโยบาย/fc1 คุณสมบัติDict
นโยบาย/fc1/อคติ เทนเซอร์ (256,) ลอย32
นโยบาย/fc1/น้ำหนัก เทนเซอร์ (256, 256) ลอย32
นโยบาย/last_fc คุณสมบัติDict
นโยบาย/last_fc/อคติ เทนเซอร์ (8,) ลอย32
นโยบาย/last_fc/น้ำหนัก เทนเซอร์ (8, 256) ลอย32
นโยบาย/last_fc_log_std คุณสมบัติDict
นโยบาย/last_fc_log_std/อคติ เทนเซอร์ (8,) ลอย32
นโยบาย/last_fc_log_std/น้ำหนัก เทนเซอร์ (8, 256) ลอย32
นโยบาย/ความไม่เชิงเส้น เทนเซอร์ เชือก
นโยบาย/output_distribution เทนเซอร์ เชือก
ขั้นตอน ชุดข้อมูล
ขั้นตอน/การดำเนินการ เทนเซอร์ (8,) ลอย32
ขั้นตอน/ส่วนลด เทนเซอร์ ลอย32
ขั้นตอน/ข้อมูล คุณสมบัติDict
ขั้นตอน/ข้อมูล/action_log_probs เทนเซอร์ ลอย32
ขั้นตอน/ข้อมูล/qpos เทนเซอร์ (15,) ลอย32
ขั้นตอน/ข้อมูล/qvel เทนเซอร์ (14,) ลอย32
ขั้นตอน/is_first เทนเซอร์ บูล
ขั้นตอน/is_last เทนเซอร์ บูล
ขั้นตอน/is_terminal เทนเซอร์ บูล
ขั้นตอน/การสังเกต เทนเซอร์ (111,) ลอย32
ขั้นตอน/รางวัล เทนเซอร์ ลอย32

d4rl_mujoco_ant/v1-ผู้เชี่ยวชาญระดับกลาง

  • ขนาดดาวน์โหลด : 442.25 MiB

  • ขนาดชุดข้อมูล : 1.13 GiB

  • แคชอัตโนมัติ ( เอกสาร ): No

  • แยก :

แยก ตัวอย่าง
'train' 2,211
  • โครงสร้างคุณสมบัติ :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float32,
            'qpos': Tensor(shape=(15,), dtype=float32),
            'qvel': Tensor(shape=(14,), dtype=float32),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float32),
        'reward': float32,
    }),
})
  • เอกสารคุณสมบัติ :
คุณสมบัติ ระดับ รูปร่าง ประเภทD คำอธิบาย
คุณสมบัติDict
ขั้นตอน ชุดข้อมูล
ขั้นตอน/การดำเนินการ เทนเซอร์ (8,) ลอย32
ขั้นตอน/ส่วนลด เทนเซอร์ ลอย32
ขั้นตอน/ข้อมูล คุณสมบัติDict
ขั้นตอน/ข้อมูล/action_log_probs เทนเซอร์ ลอย32
ขั้นตอน/ข้อมูล/qpos เทนเซอร์ (15,) ลอย32
ขั้นตอน/ข้อมูล/qvel เทนเซอร์ (14,) ลอย32
ขั้นตอน/is_first เทนเซอร์ บูล
ขั้นตอน/is_last เทนเซอร์ บูล
ขั้นตอน/is_terminal เทนเซอร์ บูล
ขั้นตอน/การสังเกต เทนเซอร์ (111,) ลอย32
ขั้นตอน/รางวัล เทนเซอร์ ลอย32

d4rl_mujoco_ant/v1-เล่นซ้ำขนาดกลาง

  • ขนาดดาวน์โหลด : 132.05 MiB

  • ขนาดชุดข้อมูล : 175.27 MiB

  • แคชอัตโนมัติ ( เอกสารประกอบ ): เฉพาะเมื่อ shuffle_files=False (train)

  • แยก :

แยก ตัวอย่าง
'train' 485
  • โครงสร้างคุณสมบัติ :
FeaturesDict({
    'algorithm': string,
    'iteration': int32,
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float64),
        'discount': float64,
        'infos': FeaturesDict({
            'action_log_probs': float64,
            'qpos': Tensor(shape=(15,), dtype=float64),
            'qvel': Tensor(shape=(14,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float64),
        'reward': float64,
    }),
})
  • เอกสารคุณสมบัติ :
คุณสมบัติ ระดับ รูปร่าง ประเภทD คำอธิบาย
คุณสมบัติDict
อัลกอริทึม เทนเซอร์ เชือก
การวนซ้ำ เทนเซอร์ int32
ขั้นตอน ชุดข้อมูล
ขั้นตอน/การดำเนินการ เทนเซอร์ (8,) ลอย64
ขั้นตอน/ส่วนลด เทนเซอร์ ลอย64
ขั้นตอน/ข้อมูล คุณสมบัติDict
ขั้นตอน/ข้อมูล/action_log_probs เทนเซอร์ ลอย64
ขั้นตอน/ข้อมูล/qpos เทนเซอร์ (15,) ลอย64
ขั้นตอน/ข้อมูล/qvel เทนเซอร์ (14,) ลอย64
ขั้นตอน/is_first เทนเซอร์ บูล
ขั้นตอน/is_last เทนเซอร์ บูล
ขั้นตอน/is_terminal เทนเซอร์ บูล
ขั้นตอน/การสังเกต เทนเซอร์ (111,) ลอย64
ขั้นตอน/รางวัล เทนเซอร์ ลอย64

d4rl_mujoco_ant/v1-เล่นซ้ำเต็ม

  • ขนาดการดาวน์โหลด : 437.57 MiB

  • ขนาดชุดข้อมูล : 580.09 MiB

  • แคชอัตโนมัติ ( เอกสาร ): No

  • แยก :

แยก ตัวอย่าง
'train' 1,319
  • โครงสร้างคุณสมบัติ :
FeaturesDict({
    'algorithm': string,
    'iteration': int32,
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float64),
        'discount': float64,
        'infos': FeaturesDict({
            'action_log_probs': float64,
            'qpos': Tensor(shape=(15,), dtype=float64),
            'qvel': Tensor(shape=(14,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float64),
        'reward': float64,
    }),
})
  • เอกสารคุณสมบัติ :
คุณสมบัติ ระดับ รูปร่าง ประเภทD คำอธิบาย
คุณสมบัติDict
อัลกอริทึม เทนเซอร์ เชือก
การวนซ้ำ เทนเซอร์ int32
ขั้นตอน ชุดข้อมูล
ขั้นตอน/การดำเนินการ เทนเซอร์ (8,) ลอย64
ขั้นตอน/ส่วนลด เทนเซอร์ ลอย64
ขั้นตอน/ข้อมูล คุณสมบัติDict
ขั้นตอน/ข้อมูล/action_log_probs เทนเซอร์ ลอย64
ขั้นตอน/ข้อมูล/qpos เทนเซอร์ (15,) ลอย64
ขั้นตอน/ข้อมูล/qvel เทนเซอร์ (14,) ลอย64
ขั้นตอน/is_first เทนเซอร์ บูล
ขั้นตอน/is_last เทนเซอร์ บูล
ขั้นตอน/is_terminal เทนเซอร์ บูล
ขั้นตอน/การสังเกต เทนเซอร์ (111,) ลอย64
ขั้นตอน/รางวัล เทนเซอร์ ลอย64

d4rl_mujoco_ant/v1-สุ่ม

  • ขนาดดาวน์โหลด : 225.18 MiB

  • ขนาดชุดข้อมูล : 583.83 MiB

  • แคชอัตโนมัติ ( เอกสาร ): No

  • แยก :

แยก ตัวอย่าง
'train' 5,741
  • โครงสร้างคุณสมบัติ :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float32,
            'qpos': Tensor(shape=(15,), dtype=float32),
            'qvel': Tensor(shape=(14,), dtype=float32),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float32),
        'reward': float32,
    }),
})
  • เอกสารคุณสมบัติ :
คุณสมบัติ ระดับ รูปร่าง ประเภทD คำอธิบาย
คุณสมบัติDict
ขั้นตอน ชุดข้อมูล
ขั้นตอน/การดำเนินการ เทนเซอร์ (8,) ลอย32
ขั้นตอน/ส่วนลด เทนเซอร์ ลอย32
ขั้นตอน/ข้อมูล คุณสมบัติDict
ขั้นตอน/ข้อมูล/action_log_probs เทนเซอร์ ลอย32
ขั้นตอน/ข้อมูล/qpos เทนเซอร์ (15,) ลอย32
ขั้นตอน/ข้อมูล/qvel เทนเซอร์ (14,) ลอย32
ขั้นตอน/is_first เทนเซอร์ บูล
ขั้นตอน/is_last เทนเซอร์ บูล
ขั้นตอน/is_terminal เทนเซอร์ บูล
ขั้นตอน/การสังเกต เทนเซอร์ (111,) ลอย32
ขั้นตอน/รางวัล เทนเซอร์ ลอย32

d4rl_mujoco_ant/v2-ผู้เชี่ยวชาญ

  • ขนาดดาวน์โหลด : 355.94 MiB

  • ขนาดชุดข้อมูล : 969.38 MiB

  • แคชอัตโนมัติ ( เอกสาร ): No

  • แยก :

แยก ตัวอย่าง
'train' 1,035
  • โครงสร้างคุณสมบัติ :
FeaturesDict({
    'algorithm': string,
    'iteration': int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 111), dtype=float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 256), dtype=float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(8,), dtype=float32),
            'weight': Tensor(shape=(8, 256), dtype=float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(8,), dtype=float32),
            'weight': Tensor(shape=(8, 256), dtype=float32),
        }),
        'nonlinearity': string,
        'output_distribution': string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float64,
            'qpos': Tensor(shape=(15,), dtype=float64),
            'qvel': Tensor(shape=(14,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float32),
        'reward': float32,
    }),
})
  • เอกสารคุณสมบัติ :
คุณสมบัติ ระดับ รูปร่าง ประเภทD คำอธิบาย
คุณสมบัติDict
อัลกอริทึม เทนเซอร์ เชือก
การวนซ้ำ เทนเซอร์ int32
นโยบาย คุณสมบัติDict
นโยบาย/fc0 คุณสมบัติDict
นโยบาย/fc0/อคติ เทนเซอร์ (256,) ลอย32
นโยบาย/fc0/น้ำหนัก เทนเซอร์ (256, 111) ลอย32
นโยบาย/fc1 คุณสมบัติDict
นโยบาย/fc1/อคติ เทนเซอร์ (256,) ลอย32
นโยบาย/fc1/น้ำหนัก เทนเซอร์ (256, 256) ลอย32
นโยบาย/last_fc คุณสมบัติDict
นโยบาย/last_fc/อคติ เทนเซอร์ (8,) ลอย32
นโยบาย/last_fc/น้ำหนัก เทนเซอร์ (8, 256) ลอย32
นโยบาย/last_fc_log_std คุณสมบัติDict
นโยบาย/last_fc_log_std/อคติ เทนเซอร์ (8,) ลอย32
นโยบาย/last_fc_log_std/น้ำหนัก เทนเซอร์ (8, 256) ลอย32
นโยบาย/ความไม่เชิงเส้น เทนเซอร์ เชือก
นโยบาย/output_distribution เทนเซอร์ เชือก
ขั้นตอน ชุดข้อมูล
ขั้นตอน/การดำเนินการ เทนเซอร์ (8,) ลอย32
ขั้นตอน/ส่วนลด เทนเซอร์ ลอย32
ขั้นตอน/ข้อมูล คุณสมบัติDict
ขั้นตอน/ข้อมูล/action_log_probs เทนเซอร์ ลอย64
ขั้นตอน/ข้อมูล/qpos เทนเซอร์ (15,) ลอย64
ขั้นตอน/ข้อมูล/qvel เทนเซอร์ (14,) ลอย64
ขั้นตอน/is_first เทนเซอร์ บูล
ขั้นตอน/is_last เทนเซอร์ บูล
ขั้นตอน/is_terminal เทนเซอร์ บูล
ขั้นตอน/การสังเกต เทนเซอร์ (111,) ลอย32
ขั้นตอน/รางวัล เทนเซอร์ ลอย32

d4rl_mujoco_ant/v2-เล่นซ้ำเต็ม

  • ขนาดการดาวน์โหลด : 428.57 MiB

  • ขนาดชุดข้อมูล : 580.09 MiB

  • แคชอัตโนมัติ ( เอกสาร ): No

  • แยก :

แยก ตัวอย่าง
'train' 1,319
  • โครงสร้างคุณสมบัติ :
FeaturesDict({
    'algorithm': string,
    'iteration': int32,
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float64,
            'qpos': Tensor(shape=(15,), dtype=float64),
            'qvel': Tensor(shape=(14,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float32),
        'reward': float32,
    }),
})
  • เอกสารคุณสมบัติ :
คุณสมบัติ ระดับ รูปร่าง ประเภทD คำอธิบาย
คุณสมบัติDict
อัลกอริทึม เทนเซอร์ เชือก
การวนซ้ำ เทนเซอร์ int32
ขั้นตอน ชุดข้อมูล
ขั้นตอน/การดำเนินการ เทนเซอร์ (8,) ลอย32
ขั้นตอน/ส่วนลด เทนเซอร์ ลอย32
ขั้นตอน/ข้อมูล คุณสมบัติDict
ขั้นตอน/ข้อมูล/action_log_probs เทนเซอร์ ลอย64
ขั้นตอน/ข้อมูล/qpos เทนเซอร์ (15,) ลอย64
ขั้นตอน/ข้อมูล/qvel เทนเซอร์ (14,) ลอย64
ขั้นตอน/is_first เทนเซอร์ บูล
ขั้นตอน/is_last เทนเซอร์ บูล
ขั้นตอน/is_terminal เทนเซอร์ บูล
ขั้นตอน/การสังเกต เทนเซอร์ (111,) ลอย32
ขั้นตอน/รางวัล เทนเซอร์ ลอย32

d4rl_mujoco_ant/v2-ปานกลาง

  • ขนาดดาวน์โหลด : 358.81 MiB

  • ขนาดชุดข้อมูล : 1.01 GiB

  • แคชอัตโนมัติ ( เอกสาร ): No

  • แยก :

แยก ตัวอย่าง
'train' 1,203
  • โครงสร้างคุณสมบัติ :
FeaturesDict({
    'algorithm': string,
    'iteration': int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 111), dtype=float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 256), dtype=float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(8,), dtype=float32),
            'weight': Tensor(shape=(8, 256), dtype=float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(8,), dtype=float32),
            'weight': Tensor(shape=(8, 256), dtype=float32),
        }),
        'nonlinearity': string,
        'output_distribution': string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float64,
            'qpos': Tensor(shape=(15,), dtype=float64),
            'qvel': Tensor(shape=(14,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float32),
        'reward': float32,
    }),
})
  • เอกสารคุณสมบัติ :
คุณสมบัติ ระดับ รูปร่าง ประเภทD คำอธิบาย
คุณสมบัติDict
อัลกอริทึม เทนเซอร์ เชือก
การวนซ้ำ เทนเซอร์ int32
นโยบาย คุณสมบัติDict
นโยบาย/fc0 คุณสมบัติDict
นโยบาย/fc0/อคติ เทนเซอร์ (256,) ลอย32
นโยบาย/fc0/น้ำหนัก เทนเซอร์ (256, 111) ลอย32
นโยบาย/fc1 คุณสมบัติDict
นโยบาย/fc1/อคติ เทนเซอร์ (256,) ลอย32
นโยบาย/fc1/น้ำหนัก เทนเซอร์ (256, 256) ลอย32
นโยบาย/last_fc คุณสมบัติDict
นโยบาย/last_fc/อคติ เทนเซอร์ (8,) ลอย32
นโยบาย/last_fc/น้ำหนัก เทนเซอร์ (8, 256) ลอย32
นโยบาย/last_fc_log_std คุณสมบัติDict
นโยบาย/last_fc_log_std/อคติ เทนเซอร์ (8,) ลอย32
นโยบาย/last_fc_log_std/น้ำหนัก เทนเซอร์ (8, 256) ลอย32
นโยบาย/ความไม่เชิงเส้น เทนเซอร์ เชือก
นโยบาย/output_distribution เทนเซอร์ เชือก
ขั้นตอน ชุดข้อมูล
ขั้นตอน/การดำเนินการ เทนเซอร์ (8,) ลอย32
ขั้นตอน/ส่วนลด เทนเซอร์ ลอย32
ขั้นตอน/ข้อมูล คุณสมบัติDict
ขั้นตอน/ข้อมูล/action_log_probs เทนเซอร์ ลอย64
ขั้นตอน/ข้อมูล/qpos เทนเซอร์ (15,) ลอย64
ขั้นตอน/ข้อมูล/qvel เทนเซอร์ (14,) ลอย64
ขั้นตอน/is_first เทนเซอร์ บูล
ขั้นตอน/is_last เทนเซอร์ บูล
ขั้นตอน/is_terminal เทนเซอร์ บูล
ขั้นตอน/การสังเกต เทนเซอร์ (111,) ลอย32
ขั้นตอน/รางวัล เทนเซอร์ ลอย32

d4rl_mujoco_ant/v2-ผู้เชี่ยวชาญระดับกลาง

  • ขนาดดาวน์โหลด : 713.67 MiB

  • ขนาดชุดข้อมูล : 1.13 GiB

  • แคชอัตโนมัติ ( เอกสาร ): No

  • แยก :

แยก ตัวอย่าง
'train' 2,237
  • โครงสร้างคุณสมบัติ :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float64,
            'qpos': Tensor(shape=(15,), dtype=float64),
            'qvel': Tensor(shape=(14,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float32),
        'reward': float32,
    }),
})
  • เอกสารคุณสมบัติ :
คุณสมบัติ ระดับ รูปร่าง ประเภทD คำอธิบาย
คุณสมบัติDict
ขั้นตอน ชุดข้อมูล
ขั้นตอน/การดำเนินการ เทนเซอร์ (8,) ลอย32
ขั้นตอน/ส่วนลด เทนเซอร์ ลอย32
ขั้นตอน/ข้อมูล คุณสมบัติDict
ขั้นตอน/ข้อมูล/action_log_probs เทนเซอร์ ลอย64
ขั้นตอน/ข้อมูล/qpos เทนเซอร์ (15,) ลอย64
ขั้นตอน/ข้อมูล/qvel เทนเซอร์ (14,) ลอย64
ขั้นตอน/is_first เทนเซอร์ บูล
ขั้นตอน/is_last เทนเซอร์ บูล
ขั้นตอน/is_terminal เทนเซอร์ บูล
ขั้นตอน/การสังเกต เทนเซอร์ (111,) ลอย32
ขั้นตอน/รางวัล เทนเซอร์ ลอย32

d4rl_mujoco_ant/v2-เล่นซ้ำขนาดกลาง

  • ขนาดดาวน์โหลด : 130.16 MiB

  • ขนาดชุดข้อมูล : 175.27 MiB

  • แคชอัตโนมัติ ( เอกสารประกอบ ): เฉพาะเมื่อ shuffle_files=False (train)

  • แยก :

แยก ตัวอย่าง
'train' 485
  • โครงสร้างคุณสมบัติ :
FeaturesDict({
    'algorithm': string,
    'iteration': int32,
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float64,
            'qpos': Tensor(shape=(15,), dtype=float64),
            'qvel': Tensor(shape=(14,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float32),
        'reward': float32,
    }),
})
  • เอกสารคุณสมบัติ :
คุณสมบัติ ระดับ รูปร่าง ประเภทD คำอธิบาย
คุณสมบัติDict
อัลกอริทึม เทนเซอร์ เชือก
การวนซ้ำ เทนเซอร์ int32
ขั้นตอน ชุดข้อมูล
ขั้นตอน/การดำเนินการ เทนเซอร์ (8,) ลอย32
ขั้นตอน/ส่วนลด เทนเซอร์ ลอย32
ขั้นตอน/ข้อมูล คุณสมบัติDict
ขั้นตอน/ข้อมูล/action_log_probs เทนเซอร์ ลอย64
ขั้นตอน/ข้อมูล/qpos เทนเซอร์ (15,) ลอย64
ขั้นตอน/ข้อมูล/qvel เทนเซอร์ (14,) ลอย64
ขั้นตอน/is_first เทนเซอร์ บูล
ขั้นตอน/is_last เทนเซอร์ บูล
ขั้นตอน/is_terminal เทนเซอร์ บูล
ขั้นตอน/การสังเกต เทนเซอร์ (111,) ลอย32
ขั้นตอน/รางวัล เทนเซอร์ ลอย32

d4rl_mujoco_ant/v2-สุ่ม

  • ขนาดดาวน์โหลด : 366.66 MiB

  • ขนาดชุดข้อมูล : 583.90 MiB

  • แคชอัตโนมัติ ( เอกสาร ): No

  • แยก :

แยก ตัวอย่าง
'train' 5,822
  • โครงสร้างคุณสมบัติ :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float64,
            'qpos': Tensor(shape=(15,), dtype=float64),
            'qvel': Tensor(shape=(14,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float32),
        'reward': float32,
    }),
})
  • เอกสารคุณสมบัติ :
คุณสมบัติ ระดับ รูปร่าง ประเภทD คำอธิบาย
คุณสมบัติDict
ขั้นตอน ชุดข้อมูล
ขั้นตอน/การดำเนินการ เทนเซอร์ (8,) ลอย32
ขั้นตอน/ส่วนลด เทนเซอร์ ลอย32
ขั้นตอน/ข้อมูล คุณสมบัติDict
ขั้นตอน/ข้อมูล/action_log_probs เทนเซอร์ ลอย64
ขั้นตอน/ข้อมูล/qpos เทนเซอร์ (15,) ลอย64
ขั้นตอน/ข้อมูล/qvel เทนเซอร์ (14,) ลอย64
ขั้นตอน/is_first เทนเซอร์ บูล
ขั้นตอน/is_last เทนเซอร์ บูล
ขั้นตอน/is_terminal เทนเซอร์ บูล
ขั้นตอน/การสังเกต เทนเซอร์ (111,) ลอย32
ขั้นตอน/รางวัล เทนเซอร์ ลอย32