- Tanım :
Caltech-101 consists of pictures of objects belonging to 101 classes, plus one background clutter
class. Each image is labelled with a single object. Each class contains roughly 40 to 800 images, totalling around 9k images. Images are of variable sizes, with typical edge lengths of 200-300 pixels. This version contains image-level labels only. The original dataset also contains bounding boxes.
Additional Documentation : Explore on Papers With Code
Homepage : https://doi.org/10.22002/D1.20086
Source code :
tfds.datasets.caltech101.Builder
Versions :
-
3.0.0
: New split API ( https://tensorflow.org/datasets/splits ) -
3.0.1
: Website URL update -
3.0.2
(default): Download URL update
-
Download size :
131.05 MiB
Dataset size :
132.86 MiB
Auto-cached ( documentation ): Yes
Splits :
Bölmek | Örnekler |
---|---|
'test' | 6.084 |
'train' | 3.060 |
- Feature structure :
FeaturesDict({
'image': Image(shape=(None, None, 3), dtype=uint8),
'image/file_name': Text(shape=(), dtype=string),
'label': ClassLabel(shape=(), dtype=int64, num_classes=102),
})
- Feature documentation :
Özellik | Sınıf | Şekil | Dtype | Tanım |
---|---|---|---|---|
FeaturesDict | ||||
görüntü | Resim | (None, None, 3) | uint8 | |
image/file_name | Metin | sicim | ||
etiket | ClassLabel | int64 |
Supervised keys (See
as_supervised
doc ):('image', 'label')
Figure ( tfds.show_examples ):
- Examples ( tfds.as_dataframe ):
- Alıntı :
@article{FeiFei2004LearningGV,
title={Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories},
author={Li Fei-Fei and Rob Fergus and Pietro Perona},
journal={Computer Vision and Pattern Recognition Workshop},
year={2004},
}