berkeley_rpt_converted_externally_to_rlds

  • Tanım :

Franka masa üstü seçim yeri görevlerini gerçekleştiriyor

Bölmek Örnekler
'train' 908
  • Özellik yapısı :
FeaturesDict({
    'episode_metadata': FeaturesDict({
        'file_path': Text(shape=(), dtype=string),
    }),
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32, description=Robot action, consists of [7 delta joint pos,1x gripper binary state].),
        'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
        'language_instruction': Text(shape=(), dtype=string),
        'observation': FeaturesDict({
            'gripper': Scalar(shape=(), dtype=bool, description=Binary gripper state (1 - closed, 0 - open)),
            'hand_image': Image(shape=(480, 640, 3), dtype=uint8, description=Hand camera RGB observation.),
            'joint_pos': Tensor(shape=(7,), dtype=float32, description=xArm joint positions (7 DoF).),
        }),
        'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
    }),
})
  • Özellik belgeleri :
Özellik Sınıf Şekil Dtipi Tanım
ÖzelliklerDict
bölüm_meta verileri ÖzelliklerDict
bölüm_metadata/dosya_yolu Metin sicim Orijinal veri dosyasının yolu.
adımlar Veri kümesi
adımlar/eylem Tensör (8,) kayan nokta32 Robot hareketi, [7 delta eklem konumu,1x tutucu ikili durumu]'ndan oluşur.
adımlar/indirim Skaler kayan nokta32 Sağlanırsa indirim, varsayılan olarak 1'dir.
adımlar/is_first Tensör bool
adımlar/is_last Tensör bool
adımlar/is_terminal Tensör bool
adımlar/dil_embedding Tensör (512,) kayan nokta32 Kona dili yerleştirme. Bkz. https://tfhub.dev/google/universal-sentence-encoder-large/5
adımlar/language_instruction Metin sicim Dil Öğretimi.
adımlar/gözlem ÖzelliklerDict
adımlar/gözlem/kıskaç Skaler bool İkili tutucu durumu (1 - kapalı, 0 - açık)
adımlar/gözlem/el_image Resim (480, 640, 3) uint8 El kamerası RGB gözlemi.
adımlar/gözlem/ortak_pos Tensör (7,) kayan nokta32 xArm eklem pozisyonları (7 DoF).
adımlar/ödül Skaler kayan nokta32 Sağlandığı takdirde ödül, demolar için son adımda 1.
  • Alıntı :
@article{Radosavovic2023,
  title={Robot Learning with Sensorimotor Pre-training},
  author={Ilija Radosavovic and Baifeng Shi and Letian Fu and Ken Goldberg and Trevor Darrell and Jitendra Malik},
  year={2023},
  journal={arXiv:2306.10007}
}