Visualize images (and labels) from an image classification dataset.
tfds.visualization.show_examples(
ds: _Dataset,
ds_info: dataset_info.DatasetInfo,
is_batched: bool = False,
**options_kwargs
)
Used in the notebooks
This function is for interactive use (Colab, Jupyter). It displays and return
a plot of (rows*columns) images from a tf.data.Dataset.
Usage:
ds, ds_info = tfds.load('cifar10', split='train', with_info=True)
fig = tfds.show_examples(ds, ds_info)
Args |
ds
|
tf.data.Dataset . The tf.data.Dataset object to visualize. Examples
should not be batched. Examples will be consumed in order until (rows *
cols) are read or the dataset is consumed.
|
ds_info
|
The dataset info object to which extract the label and features
info. Available either through tfds.load('mnist', with_info=True) or
tfds.builder('mnist').info
|
is_batched
|
Whether the data is batched.
|
**options_kwargs
|
Additional display options, specific to the dataset type
to visualize. Are forwarded to tfds.visualization.Visualizer.show . See
the tfds.visualization for a list of available visualizers.
|
Returns |
fig
|
The matplotlib.Figure object
|