Paramétrer un modèle large et approfondi à l'aide de Google Cloud

Voir sur TensorFlow.org Exécuter dans Google Colab Voir sur GitHub Télécharger le carnet Logo KaggleCourir à Kaggle

Dans cet exemple, nous utiliserons CloudTuner et Google Cloud pour affiner un modèle large et profond basé sur le modèle réglable introduit dans l'apprentissage de données structurées avec les réseaux larges, profonds et croisés . Dans cet exemple, nous utiliserons l'ensemble de données du CAIIS Dogfood Day

Importer les modules requis

import datetime
import uuid

import numpy as np
import pandas as pd
import tensorflow as tf
import os
import sys
import subprocess

from tensorflow.keras import datasets, layers, models
from sklearn.model_selection import train_test_split

# Install the latest version of tensorflow_cloud and other required packages.
if os.environ.get("TF_KERAS_RUNNING_REMOTELY", True):
    subprocess.run(
        ['python3', '-m', 'pip', 'install', 'tensorflow-cloud', '-q'])
    subprocess.run(
        ['python3', '-m', 'pip', 'install', 'google-cloud-storage', '-q'])
    subprocess.run(
        ['python3', '-m', 'pip', 'install', 'fsspec', '-q'])
    subprocess.run(
        ['python3', '-m', 'pip', 'install', 'gcsfs', '-q'])

import tensorflow_cloud as tfc
print(tfc.__version__)
0.1.15
tf.version.VERSION
'2.6.0'

Configurations de projet

Définition des paramètres du projet. Pour plus de détails sur les paramètres spécifiques à Google Cloud, veuillez vous référer aux instructions de configuration du projet Google Cloud .

# Set Google Cloud Specific parameters

# TODO: Please set GCP_PROJECT_ID to your own Google Cloud project ID.
GCP_PROJECT_ID = 'YOUR_PROJECT_ID' 

# TODO: Change the Service Account Name to your own Service Account
SERVICE_ACCOUNT_NAME = 'YOUR_SERVICE_ACCOUNT_NAME'
SERVICE_ACCOUNT = f'{SERVICE_ACCOUNT_NAME}@{GCP_PROJECT_ID}.iam.gserviceaccount.com'

# TODO: set GCS_BUCKET to your own Google Cloud Storage (GCS) bucket.
GCS_BUCKET = 'YOUR_GCS_BUCKET_NAME'

# DO NOT CHANGE: Currently only the 'us-central1' region is supported.
REGION = 'us-central1'
# Set Tuning Specific parameters

# OPTIONAL: You can change the job name to any string.
JOB_NAME = 'wide_and_deep'

# OPTIONAL: Set Number of concurrent tuning jobs that you would like to run.
NUM_JOBS = 5

# TODO: Set the study ID for this run. Study_ID can be any unique string.
# Reusing the same Study_ID will cause the Tuner to continue tuning the
# Same Study parameters. This can be used to continue on a terminated job,
# or load stats from a previous study.
STUDY_NUMBER = '00001'
STUDY_ID = f'{GCP_PROJECT_ID}_{JOB_NAME}_{STUDY_NUMBER}'

# Setting location were training logs and checkpoints will be stored
GCS_BASE_PATH = f'gs://{GCS_BUCKET}/{JOB_NAME}/{STUDY_ID}'
TENSORBOARD_LOGS_DIR = os.path.join(GCS_BASE_PATH,"logs")

Authentifier le notebook pour utiliser votre projet Google Cloud

Pour les notebooks Kaggle, cliquez sur "Modules complémentaires" -> "SDK Google Cloud" avant d'exécuter la cellule ci-dessous.

# Using tfc.remote() to ensure this code only runs in notebook
if not tfc.remote():

    # Authentication for Kaggle Notebooks
    if "kaggle_secrets" in sys.modules:
        from kaggle_secrets import UserSecretsClient
        UserSecretsClient().set_gcloud_credentials(project=GCP_PROJECT_ID)

    # Authentication for Colab Notebooks
    if "google.colab" in sys.modules:
        from google.colab import auth
        auth.authenticate_user()
        os.environ["GOOGLE_CLOUD_PROJECT"] = GCP_PROJECT_ID

Charger les données

Lisez les données brutes et divisez-les pour former et tester des ensembles de données. Pour cette étape, vous devrez copier l'ensemble de données dans votre compartiment GCS afin qu'il soit accessible pendant la formation. Pour cet exemple, nous utilisons l'ensemble de données de https://www.kaggle.com/c/caiis-dogfood-day-2020

Pour ce faire, vous pouvez exécuter les commandes suivantes pour télécharger et copier l'ensemble de données dans votre compartiment GCS, ou télécharger manuellement l'ensemble de données vi Kaggle UI et télécharger le fichier train.csv dans votre compartiment GCS vi GCS UI .

# Download the dataset
kaggle competitions download -c caiis-dogfood-day-2020

# Copy the training file to your bucket
gsutil cp ./caiis-dogfood-day-2020/train.csv $GCS_BASE_PATH/caiis-dogfood-day-2020/train.csv
train_URL = f'{GCS_BASE_PATH}/caiis-dogfood-day-2020/train.csv'
data = pd.read_csv(train_URL)
train, test = train_test_split(data, test_size=0.1)
# A utility method to create a tf.data dataset from a Pandas Dataframe
def df_to_dataset(df, shuffle=True, batch_size=32):
  df = df.copy()
  labels = df.pop('target')
  ds = tf.data.Dataset.from_tensor_slices((dict(df), labels))
  if shuffle:
    ds = ds.shuffle(buffer_size=len(df))
  ds = ds.batch(batch_size)
  return ds
sm_batch_size = 1000  # A small batch size is used for demonstration purposes
train_ds = df_to_dataset(train, batch_size=sm_batch_size)
test_ds = df_to_dataset(test, shuffle=False, batch_size=sm_batch_size)

Prétraiter les données

Configuration de couches de prétraitement pour les données d'entrée catégorielles et numériques. Pour plus de détails sur les couches de prétraitement, veuillez vous référer à l'utilisation des couches de prétraitement .

from tensorflow.keras.layers.experimental import preprocessing

def create_model_inputs():
    inputs ={}
    for name, column in data.items():
        if name in ('id','target'):
            continue
        dtype = column.dtype
        if dtype == object:
            dtype = tf.string
        else:
            dtype = tf.float32

        inputs[name] = tf.keras.Input(shape=(1,), name=name, dtype=dtype)

    return inputs
#Preprocessing the numeric inputs, and running them through a normalization layer.
def preprocess_numeric_inputs(inputs):

    numeric_inputs = {name:input for name,input in inputs.items()
                      if input.dtype==tf.float32}

    x = layers.Concatenate()(list(numeric_inputs.values()))
    norm = preprocessing.Normalization()
    norm.adapt(np.array(data[numeric_inputs.keys()]))
    numeric_inputs = norm(x)
    return numeric_inputs
# Preprocessing the categorical inputs.
def preprocess_categorical_inputs(inputs):
    categorical_inputs = []
    for name, input in inputs.items():
        if input.dtype == tf.float32:
            continue

        lookup = preprocessing.StringLookup(vocabulary=np.unique(data[name]))
        one_hot = preprocessing.CategoryEncoding(max_tokens=lookup.vocab_size())

        x = lookup(input)
        x = one_hot(x)
        categorical_inputs.append(x)

    return layers.concatenate(categorical_inputs)

Définir l'architecture du modèle et les hyperparamètres

Dans cette section, nous définissons nos paramètres de réglage à l'aide des hyper paramètres Keras Tuner et d'une fonction de création de modèle. La fonction de création de modèle prend un argument hp à partir duquel vous pouvez échantillonner des hyperparamètres, tels que hp.Int('units', min_value=32, max_value=512, step=32) (un entier d'une certaine plage).

import kerastuner

# Configure the search space
HPS = kerastuner.engine.hyperparameters.HyperParameters()
HPS.Float('learning_rate', min_value=1e-4, max_value=1e-2, sampling='log')

HPS.Int('num_layers', min_value=2, max_value=5)
for i in range(5):
    HPS.Float('dropout_rate_' + str(i), min_value=0.0, max_value=0.3, step=0.1)
    HPS.Choice('num_units_' + str(i), [32, 64, 128, 256])
from tensorflow.keras import layers
from tensorflow.keras.optimizers import Adam


def create_wide_and_deep_model(hp):

    inputs = create_model_inputs()
    wide = preprocess_categorical_inputs(inputs)
    wide = layers.BatchNormalization()(wide)

    deep = preprocess_numeric_inputs(inputs)
    for i in range(hp.get('num_layers')):
        deep = layers.Dense(hp.get('num_units_' + str(i)))(deep)
        deep = layers.BatchNormalization()(deep)
        deep = layers.ReLU()(deep)
        deep = layers.Dropout(hp.get('dropout_rate_' + str(i)))(deep)

    both = layers.concatenate([wide, deep])
    outputs = layers.Dense(1, activation='sigmoid')(both)
    model = tf.keras.Model(inputs=inputs, outputs=outputs)
    metrics = [
        tf.keras.metrics.Precision(name='precision'),
        tf.keras.metrics.Recall(name='recall'),
        'accuracy',
        'mse'
    ]

    model.compile(
        optimizer=Adam(lr=hp.get('learning_rate')),
        loss='binary_crossentropy',
        metrics=metrics)
    return model

Configurer un CloudTuner

Dans cette section, nous configurons le tuner cloud pour l'exécution à distance et locale. La principale différence entre les deux réside dans la stratégie de distribution.

from tensorflow_cloud import CloudTuner

distribution_strategy = None
if not tfc.remote():
    # Using MirroredStrategy to use a single instance with multiple GPUs
    # during remote execution while using no strategy for local.
    distribution_strategy = tf.distribute.MirroredStrategy()

tuner = CloudTuner(
    create_wide_and_deep_model,
    project_id=GCP_PROJECT_ID,
    project_name=JOB_NAME,
    region=REGION,
    objective='accuracy',
    hyperparameters=HPS,
    max_trials=100,
    directory=GCS_BASE_PATH,
    study_id=STUDY_ID,
    overwrite=True,
    distribution_strategy=distribution_strategy)
# Configure Tensorboard logs
callbacks=[
    tf.keras.callbacks.TensorBoard(log_dir=TENSORBOARD_LOGS_DIR)]

# Setting to run tuning remotely, you can run tuner locally to validate it works first.
if tfc.remote():
    tuner.search(train_ds, epochs=20, validation_data=test_ds, callbacks=callbacks)

# You can uncomment the code below to run the tuner.search() locally to validate
# everything works before submitting the job to Cloud. Stop the job manually
# after one epoch.

# else:
#     tuner.search(train_ds, epochs=1, validation_data=test_ds, callbacks=callbacks)

Commencer la formation à distance

Cette étape préparera votre code à partir de ce notebook pour une exécution à distance et démarrera NUM_JOBS exécutions parallèles à distance pour entraîner le modèle. Une fois les tâches soumises, vous pouvez passer à l'étape suivante pour suivre la progression des tâches via Tensorboard.

tfc.run_cloudtuner(
    distribution_strategy='auto',
    docker_config=tfc.DockerConfig(
        image_build_bucket=GCS_BUCKET
        ),
    chief_config=tfc.MachineConfig(
        cpu_cores=16,
        memory=60,
    ),
    job_labels={'job': JOB_NAME},
    service_account=SERVICE_ACCOUNT,
    num_jobs=NUM_JOBS
)

Résultats de la formation

Reconnectez votre instance Colab

La plupart des tâches de formation à distance durent longtemps. Si vous utilisez Colab, elles peuvent expirer avant que les résultats de la formation ne soient disponibles. Dans ce cas, réexécutez les sections suivantes pour vous reconnecter et configurer votre instance Colab afin d'accéder aux résultats de la formation. Exécutez les sections suivantes dans l'ordre :

  1. Importer les modules requis
  2. Configurations de projet
  3. Authentifier le notebook pour utiliser votre projet Google Cloud

Charger le tableau tenseur

Pendant que la formation est en cours, vous pouvez utiliser Tensorboard pour afficher les résultats. Notez que les résultats ne s'afficheront qu'après le début de votre entraînement. Cela peut prendre quelques minutes.

%load_ext tensorboard
%tensorboard --logdir $TENSORBOARD_LOGS_DIR

Vous pouvez accéder aux ressources de formation comme suit. Notez que les résultats ne s'afficheront qu'une fois votre travail de réglage terminé au moins un essai. Cela peut prendre quelques minutes.

if not tfc.remote():
    tuner.results_summary(1)
    best_model = tuner.get_best_models(1)[0]
    best_hyperparameters = tuner.get_best_hyperparameters(1)[0]

    # References to best trial assets
    best_trial_id = tuner.oracle.get_best_trials(1)[0].trial_id
    best_trial_dir = tuner.get_trial_dir(best_trial_id)