View source on GitHub |
Labeler for Region Proposal Network.
Inherits From: AnchorLabeler
tfm.vision.anchor.RpnAnchorLabeler(
match_threshold=0.7,
unmatched_threshold=0.3,
rpn_batch_size_per_im=256,
rpn_fg_fraction=0.5
)
Methods
label_anchors
label_anchors(
anchor_boxes: Dict[str, tf.Tensor],
gt_boxes: tf.Tensor,
gt_labels: tf.Tensor
) -> Tuple[Dict[str, tf.Tensor], Dict[str, tf.Tensor]]
Labels anchors with ground truth inputs.
Args | |
---|---|
anchor_boxes
|
An ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, num_anchors_per_location * 4]. The height_l and width_l represent the dimension of the feature pyramid at l-th level. For each anchor box, the tensor stores [y0, x0, y1, x1] for the four corners. |
gt_boxes
|
A float tensor with shape [N, 4] representing ground-truth boxes. For each row, it stores [y0, x0, y1, x1] for four corners of a box. |
gt_labels
|
A integer tensor with shape [N, 1] representing ground-truth classes. |
Returns | |
---|---|
score_targets_dict
|
An ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, num_anchors_per_location]. The height_l and width_l represent the dimension of class logits at l-th level. |
box_targets_dict
|
An ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, num_anchors_per_location * 4]. The height_l and width_l represent the dimension of bounding box regression output at l-th level. |