View source on GitHub |
Configuration data for one embedding table.
tf.tpu.experimental.embedding.TableConfig(
vocabulary_size: int,
dim: int,
initializer: Optional[Callable[[Any], None]] = None,
optimizer: Optional[_Optimizer] = None,
combiner: Text = 'mean',
name: Optional[Text] = None,
quantization_config: tf.tpu.experimental.embedding.QuantizationConfig
= None,
layout: Optional[Any] = None
)
Used in the notebooks
Used in the guide | Used in the tutorials |
---|---|
This class holds the configuration data for a single embedding table. It is
used as the table
parameter of a
tf.tpu.experimental.embedding.FeatureConfig
. Multiple
tf.tpu.experimental.embedding.FeatureConfig
objects can use the same
tf.tpu.experimental.embedding.TableConfig
object. In this case a shared
table will be created for those feature lookups.
table_config_one = tf.tpu.experimental.embedding.TableConfig(
vocabulary_size=...,
dim=...)
table_config_two = tf.tpu.experimental.embedding.TableConfig(
vocabulary_size=...,
dim=...)
feature_config = {
'feature_one': tf.tpu.experimental.embedding.FeatureConfig(
table=table_config_one),
'feature_two': tf.tpu.experimental.embedding.FeatureConfig(
table=table_config_one),
'feature_three': tf.tpu.experimental.embedding.FeatureConfig(
table=table_config_two)}
embedding = tf.tpu.experimental.embedding.TPUEmbedding(
feature_config=feature_config,
batch_size=...
optimizer=tf.tpu.experimental.embedding.Adam(0.1))
The above configuration has 2 tables, and three features. The first two features will be looked up in the first table and the third feature will be looked up in the second table.
Args | |
---|---|
vocabulary_size
|
Size of the table's vocabulary (number of rows). |
dim
|
The embedding dimension (width) of the table. |
initializer
|
A callable initializer taking one parameter, the shape of the
variable that will be initialized. Will be called once per task, to
initialize that task's shard of the embedding table. If not specified,
defaults to truncated_normal_initializer with mean 0.0 and standard
deviation 1/sqrt(dim) .
|
optimizer
|
An optional instance of an optimizer parameters class, instance
of one of tf.tpu.experimental.embedding.SGD ,
tf.tpu.experimental.embedding.Adagrad or
tf.tpu.experimental.embedding.Adam . If set will override the global
optimizer passed to tf.tpu.experimental.embedding.TPUEmbedding .
|
combiner
|
A string specifying how to reduce if there are multiple entries
in a single row. Currently 'mean', 'sqrtn', 'sum' are supported, with
'mean' the default. 'sqrtn' often achieves good accuracy, in particular
with bag-of-words columns. For more information, see
tf.nn.embedding_lookup_sparse .
|
name
|
An optional string used to name the table. Must be defined if running on SparseCore. |
quantization_config
|
The simulated quantization config. An instance of
tf.tpu.experimental.embedding.QuantizationConfig . See the class for
more documentation.
|
layout
|
If the table already has its layout computed, you can pass it in here. Otherwise, we will compute it for you. Most users should leave this as None. |