View source on GitHub |
Returns a tensor containing the shape of the input tensor.
tf.shape(
input, out_type=None, name=None
)
Used in the notebooks
Used in the guide | Used in the tutorials |
---|---|
tf.shape
returns a 1-D integer tensor representing the shape of input
.
For a scalar input, the tensor returned has a shape of (0,) and its value is
the empty vector (i.e. []).
For example:
tf.shape(1.)
<tf.Tensor: shape=(0,), dtype=int32, numpy=array([], dtype=int32)>
t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]])
tf.shape(t)
<tf.Tensor: shape=(3,), dtype=int32, numpy=array([2, 2, 3], dtype=int32)>
a = tf.keras.layers.Input((None, 10))
tf.shape(a)
<... shape=(3,) dtype=int32...>
In these cases, using tf.Tensor.shape
will return more informative results.
a.shape
TensorShape([None, None, 10])
(The first None
represents the as yet unknown batch size.)
tf.shape
and Tensor.shape
should be identical in eager mode. Within
tf.function
or within a compat.v1
context, not all dimensions may be
known until execution time. Hence, when defining custom layers and models
for graph mode, prefer the dynamic tf.shape(x)
over the static x.shape
.
Args | |
---|---|
input
|
A Tensor or SparseTensor .
|
out_type
|
(Optional) The specified output type of the operation (int32 or
int64 ). Defaults to tf.int32 . (Note: there is an experimental
flag, tf_shape_default_int64 that changes the default to tf.int64 .
This is an unsupported, experimental setting that causes known breakages.)
|
name
|
A name for the operation (optional). |
Returns | |
---|---|
A Tensor of type out_type .
|