Returns the batched diagonal part of a batched tensor.
tf.raw_ops.MatrixDiagPartV2(
input, k, padding_value, name=None
)
Returns a tensor with the k[0]
-th to k[1]
-th diagonals of the batched
input
.
Assume input
has r
dimensions [I, J, ..., L, M, N]
.
Let max_diag_len
be the maximum length among all diagonals to be extracted,
max_diag_len = min(M + min(k[1], 0), N + min(-k[0], 0))
Let num_diags
be the number of diagonals to extract,
num_diags = k[1] - k[0] + 1
.
If num_diags == 1
, the output tensor is of rank r - 1
with shape
[I, J, ..., L, max_diag_len]
and values:
diagonal[i, j, ..., l, n]
= input[i, j, ..., l, n+y, n+x] ; if 0 <= n+y < M and 0 <= n+x < N,
padding_value ; otherwise.
where y = max(-k[1], 0)
, x = max(k[1], 0)
.
Otherwise, the output tensor has rank r
with dimensions
[I, J, ..., L, num_diags, max_diag_len]
with values:
diagonal[i, j, ..., l, m, n]
= input[i, j, ..., l, n+y, n+x] ; if 0 <= n+y < M and 0 <= n+x < N,
padding_value ; otherwise.
where d = k[1] - m
, y = max(-d, 0)
, and x = max(d, 0)
.
The input must be at least a matrix.
For example:
input = np.array([[[1, 2, 3, 4], # Input shape: (2, 3, 4)
[5, 6, 7, 8],
[9, 8, 7, 6]],
[[5, 4, 3, 2],
[1, 2, 3, 4],
[5, 6, 7, 8]]])
# A main diagonal from each batch.
tf.matrix_diag_part(input) ==> [[1, 6, 7], # Output shape: (2, 3)
[5, 2, 7]]
# A superdiagonal from each batch.
tf.matrix_diag_part(input, k = 1)
==> [[2, 7, 6], # Output shape: (2, 3)
[4, 3, 8]]
# A tridiagonal band from each batch.
tf.matrix_diag_part(input, k = (-1, 1))
==> [[[2, 7, 6], # Output shape: (2, 3, 3)
[1, 6, 7],
[5, 8, 0]],
[[4, 3, 8],
[5, 2, 7],
[1, 6, 0]]]
# Padding value = 9
tf.matrix_diag_part(input, k = (1, 3), padding_value = 9)
==> [[[4, 9, 9], # Output shape: (2, 3, 3)
[3, 8, 9],
[2, 7, 6]],
[[2, 9, 9],
[3, 4, 9],
[4, 3, 8]]]
Returns | |
---|---|
A Tensor . Has the same type as input .
|