Computes the gradient of the crop_and_resize op wrt the input image tensor.
tf.raw_ops.CropAndResizeGradImage(
grads,
boxes,
box_ind,
image_size,
T,
method='bilinear',
name=None
)
Args |
grads
|
A Tensor of type float32 .
A 4-D tensor of shape [num_boxes, crop_height, crop_width, depth] .
|
boxes
|
A Tensor of type float32 .
A 2-D tensor of shape [num_boxes, 4] . The i -th row of the tensor
specifies the coordinates of a box in the box_ind[i] image and is specified
in normalized coordinates [y1, x1, y2, x2] . A normalized coordinate value of
y is mapped to the image coordinate at y * (image_height - 1) , so as the
[0, 1] interval of normalized image height is mapped to
[0, image_height - 1] in image height coordinates. We do allow y1 > y2, in
which case the sampled crop is an up-down flipped version of the original
image. The width dimension is treated similarly. Normalized coordinates
outside the [0, 1]range are allowed, in which case we use extrapolation_valueto extrapolate the input image values.
</td>
</tr><tr>
<td> box_ind<a id="box_ind"></a>
</td>
<td>
A Tensorof type int32.
A 1-D tensor of shape [num_boxes]with int32 values in [0, batch).
The value of box_ind[i]specifies the image that the i-th box refers to.
</td>
</tr><tr>
<td> image_size<a id="image_size"></a>
</td>
<td>
A Tensorof type int32.
A 1-D tensor with value [batch, image_height, image_width, depth]containing the original image size. Both image_heightand image_widthneed
to be positive.
</td>
</tr><tr>
<td> T<a id="T"></a>
</td>
<td>
A <a href="../../tf/dtypes/DType"><code>tf.DType</code></a> from: tf.float32, tf.half, tf.float64.
</td>
</tr><tr>
<td> method<a id="method"></a>
</td>
<td>
An optional stringfrom: "bilinear", "nearest". Defaults to "bilinear".
A string specifying the interpolation method. Only 'bilinear' is
supported for now.
</td>
</tr><tr>
<td> name`
|
A name for the operation (optional).
|
Returns |
A Tensor of type T .
|