Constructs a constant RaggedTensor from a nested Python list.
View aliases
Compat aliases for migration
See Migration guide for more details.
tf.ragged.constant(
pylist,
dtype=None,
ragged_rank=None,
inner_shape=None,
name=None,
row_splits_dtype=tf.dtypes.int64
) -> Union[tf.RaggedTensor
, ops._EagerTensorBase, tf.Operation
]
Used in the notebooks
Used in the guide | Used in the tutorials |
---|---|
Example:
tf.ragged.constant([[1, 2], [3], [4, 5, 6]])
<tf.RaggedTensor [[1, 2], [3], [4, 5, 6]]>
All scalar values in pylist
must have the same nesting depth K
, and the
returned RaggedTensor
will have rank K
. If pylist
contains no scalar
values, then K
is one greater than the maximum depth of empty lists in
pylist
. All scalar values in pylist
must be compatible with dtype
.
Args | |
---|---|
pylist
|
A nested list , tuple or np.ndarray . Any nested element that
is not a list , tuple or np.ndarray must be a scalar value
compatible with dtype .
|
dtype
|
The type of elements for the returned RaggedTensor . If not
specified, then a default is chosen based on the scalar values in
pylist .
|
ragged_rank
|
An integer specifying the ragged rank of the returned
RaggedTensor . Must be nonnegative and less than K . Defaults to
max(0, K - 1) if inner_shape is not specified. Defaults to
max(0, K - 1 - len(inner_shape)) if inner_shape is specified.
|
inner_shape
|
A tuple of integers specifying the shape for individual inner
values in the returned RaggedTensor . Defaults to () if ragged_rank
is not specified. If ragged_rank is specified, then a default is chosen
based on the contents of pylist .
|
name
|
A name prefix for the returned tensor (optional). |
row_splits_dtype
|
data type for the constructed RaggedTensor 's row_splits.
One of tf.int32 or tf.int64 .
|
Returns | |
---|---|
A potentially ragged tensor with rank K and the specified ragged_rank ,
containing the values from pylist .
|