View source on GitHub |
A class for Tensorflow specific optimizer logic.
tf.keras.Optimizer(
*args, **kwargs
)
The major behavior change for this class is for tf.distribute.
It will override methods from base Keras core Optimizer, which provide distribute specific functionality, e.g. variable creation, loss reduction, etc.
Attributes | |
---|---|
learning_rate
|
|
variables
|
Methods
add_variable
add_variable(
shape,
initializer='zeros',
dtype=None,
aggregation='mean',
name=None
)
add_variable_from_reference
add_variable_from_reference(
reference_variable, name=None, initializer='zeros'
)
Add an all-zeros variable with the shape and dtype of a reference variable.
apply
apply(
grads, trainable_variables=None
)
Update traininable variables according to provided gradient values.
grads
should be a list of gradient tensors
with 1:1 mapping to the list of variables the optimizer was built with.
trainable_variables
can be provided
on the first call to build the optimizer.
apply_gradients
apply_gradients(
grads_and_vars
)
assign
assign(
variable, value
)
Assign a value to a variable.
This should be used in optimizers instead of variable.assign(value)
to
support backend specific optimizations.
Note that the variable can be a model variable or an optimizer variable;
it can be a backend native variable or a Keras variable.
Args | |
---|---|
variable
|
The variable to update. |
value
|
The value to add to the variable. |
assign_add
assign_add(
variable, value
)
Add a value to a variable.
This should be used in optimizers instead of
variable.assign_add(value)
to support backend specific optimizations.
Note that the variable can be a model variable or an optimizer variable;
it can be a backend native variable or a Keras variable.
Args | |
---|---|
variable
|
The variable to update. |
value
|
The value to add to the variable. |
assign_sub
assign_sub(
variable, value
)
Subtract a value from a variable.
This should be used in optimizers instead of
variable.assign_sub(value)
to support backend specific optimizations.
Note that the variable can be a model variable or an optimizer variable;
it can be a backend native variable or a Keras variable.
Args | |
---|---|
variable
|
The variable to update. |
value
|
The value to add to the variable. |
build
build(
variables
)
exclude_from_weight_decay
exclude_from_weight_decay(
var_list=None, var_names=None
)
Exclude variables from weight decay.
This method must be called before the optimizer's build
method is
called. You can set specific variables to exclude out, or set a list of
strings as the anchor words, if any of which appear in a variable's
name, then the variable is excluded.
Args | |
---|---|
var_list
|
A list of Variable s to exclude from weight decay.
|
var_names
|
A list of strings. If any string in var_names appear
in the model variable's name, then this model variable is
excluded from weight decay. For example, var_names=['bias']
excludes all bias variables from weight decay.
|
finalize_variable_values
finalize_variable_values(
var_list
)
Set the final value of model's trainable variables.
Sometimes there are some extra steps before ending the variable updates, such as overriding the model variables with its average value.
Args | |
---|---|
var_list
|
list of model variables. |
from_config
@classmethod
from_config( config, custom_objects=None )
Creates an optimizer from its config.
This method is the reverse of get_config
, capable of instantiating the
same optimizer from the config dictionary.
Args | |
---|---|
config
|
A Python dictionary, typically the output of get_config. |
custom_objects
|
A Python dictionary mapping names to additional user-defined Python objects needed to recreate this optimizer. |
Returns | |
---|---|
An optimizer instance. |
get_config
get_config()
Returns the config of the optimizer.
An optimizer config is a Python dictionary (serializable) containing the configuration of an optimizer. The same optimizer can be reinstantiated later (without any saved state) from this configuration.
Subclass optimizer should override this method to include other hyperparameters.
Returns | |
---|---|
Python dictionary. |
load_own_variables
load_own_variables(
store
)
Set the state of this optimizer object.
save_own_variables
save_own_variables(
store
)
Get the state of this optimizer object.
scale_loss
scale_loss(
loss
)
Scale the loss before computing gradients.
Scales the loss before gradients are computed in a train_step
. This
is primarily useful during mixed precision training to prevent numeric
underflow.
set_weights
set_weights(
weights
)
Set the weights of the optimizer.
stateless_apply
stateless_apply(
optimizer_variables, grads, trainable_variables
)
update_step
update_step(
gradient, variable, learning_rate
)