Loads a model saved via model.save()
.
tf.keras.models.load_model(
filepath, custom_objects=None, compile=True, safe_mode=True
)
Used in the notebooks
Used in the guide |
Used in the tutorials |
|
|
Args |
filepath
|
str or pathlib.Path object, path to the saved model file.
|
custom_objects
|
Optional dictionary mapping names
(strings) to custom classes or functions to be
considered during deserialization.
|
compile
|
Boolean, whether to compile the model after loading.
|
safe_mode
|
Boolean, whether to disallow unsafe lambda deserialization.
When safe_mode=False , loading an object has the potential to
trigger arbitrary code execution. This argument is only
applicable to the Keras v3 model format. Defaults to True .
|
Returns |
A Keras model instance. If the original model was compiled,
and the argument compile=True is set, then the returned model
will be compiled. Otherwise, the model will be left uncompiled.
|
Example:
model = keras.Sequential([
keras.layers.Dense(5, input_shape=(3,)),
keras.layers.Softmax()])
model.save("model.keras")
loaded_model = keras.saving.load_model("model.keras")
x = np.random.random((10, 3))
assert np.allclose(model.predict(x), loaded_model.predict(x))
Note that the model variables may have different name values
(var.name
property, e.g. "dense_1/kernel:0"
) after being reloaded.
It is recommended that you use layer attributes to
access specific variables, e.g. model.get_layer("dense_1").kernel
.