Computes the sparse categorical crossentropy loss.
tf.keras.losses.sparse_categorical_crossentropy(
y_true, y_pred, from_logits=False, ignore_class=None, axis=-1
)
Used in the notebooks
Used in the guide |
Used in the tutorials |
|
|
Args |
y_true
|
Ground truth values.
|
y_pred
|
The predicted values.
|
from_logits
|
Whether y_pred is expected to be a logits tensor. By
default, we assume that y_pred encodes a probability distribution.
|
ignore_class
|
Optional integer. The ID of a class to be ignored during
loss computation. This is useful, for example, in segmentation
problems featuring a "void" class (commonly -1 or 255) in
segmentation maps. By default (ignore_class=None ), all classes are
considered.
|
axis
|
Defaults to -1 . The dimension along which the entropy is
computed.
|
Returns |
Sparse categorical crossentropy loss value.
|
Examples:
y_true = [1, 2]
y_pred = [[0.05, 0.95, 0], [0.1, 0.8, 0.1]]
loss = keras.losses.sparse_categorical_crossentropy(y_true, y_pred)
assert loss.shape == (2,)
loss
array([0.0513, 2.303], dtype=float32)