tf.keras.losses.logcosh
Stay organized with collections
Save and categorize content based on your preferences.
Logarithm of the hyperbolic cosine of the prediction error.
tf.keras.losses.logcosh(
y_true, y_pred
)
loss = mean(log(cosh(y_pred - y_true)), axis=-1)
Note that log(cosh(x))
is approximately equal to (x ** 2) / 2
for small
x
and to abs(x) - log(2)
for large x
. This means that 'logcosh' works
mostly like the mean squared error, but will not be so strongly affected by
the occasional wildly incorrect prediction.
Example:
y_true = [[0., 1.], [0., 0.]]
y_pred = [[1., 1.], [0., 0.]]
loss = keras.losses.log_cosh(y_true, y_pred)
0.108
Args |
y_true
|
Ground truth values with shape = [batch_size, d0, .. dN] .
|
y_pred
|
The predicted values with shape = [batch_size, d0, .. dN] .
|
Returns |
Logcosh error values with shape = [batch_size, d0, .. dN-1] .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-06-07 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-06-07 UTC."],[],[]]