View source on GitHub |
Computes the crossentropy loss between the labels and predictions.
Inherits From: Loss
tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=False,
ignore_class=None,
reduction='sum_over_batch_size',
name='sparse_categorical_crossentropy'
)
Used in the notebooks
Used in the guide | Used in the tutorials |
---|---|
Use this crossentropy loss function when there are two or more label
classes. We expect labels to be provided as integers. If you want to
provide labels using one-hot
representation, please use
CategoricalCrossentropy
loss. There should be # classes
floating point
values per feature for y_pred
and a single floating point value per
feature for y_true
.
In the snippet below, there is a single floating point value per example for
y_true
and num_classes
floating pointing values per example for
y_pred
. The shape of y_true
is [batch_size]
and the shape of y_pred
is [batch_size, num_classes]
.
Examples:
y_true = [1, 2]
y_pred = [[0.05, 0.95, 0], [0.1, 0.8, 0.1]]
# Using 'auto'/'sum_over_batch_size' reduction type.
scce = keras.losses.SparseCategoricalCrossentropy()
scce(y_true, y_pred)
1.177
# Calling with 'sample_weight'.
scce(y_true, y_pred, sample_weight=np.array([0.3, 0.7]))
0.814
# Using 'sum' reduction type.
scce = keras.losses.SparseCategoricalCrossentropy(
reduction="sum")
scce(y_true, y_pred)
2.354
# Using 'none' reduction type.
scce = keras.losses.SparseCategoricalCrossentropy(
reduction=None)
scce(y_true, y_pred)
array([0.0513, 2.303], dtype=float32)
Usage with the compile()
API:
model.compile(optimizer='sgd',
loss=keras.losses.SparseCategoricalCrossentropy())
Methods
call
call(
y_true, y_pred
)
from_config
@classmethod
from_config( config )
get_config
get_config()
__call__
__call__(
y_true, y_pred, sample_weight=None
)
Call self as a function.