tf.keras.losses.CategoricalCrossentropy

Computes the crossentropy loss between the labels and predictions.

Inherits From: Loss

Used in the notebooks

Used in the guide Used in the tutorials

Use this crossentropy loss function when there are two or more label classes. We expect labels to be provided in a one_hot representation. If you want to provide labels as integers, please use SparseCategoricalCrossentropy loss. There should be num_classes floating point values per feature, i.e., the shape of both y_pred and y_true are [batch_size, num_classes].

from_logits Whether y_pred is expected to be a logits tensor. By default, we assume that y_pred encodes a probability distribution.
label_smoothing Float in [0, 1]. When > 0, label values are smoothed, meaning the confidence on label values are relaxed. For example, if 0.1, use 0.1 / num_classes for non-target labels and 0.9 + 0.1 / num_classes for target labels.
axis The axis along which to compute crossentropy (the features axis). Defaults to -1.
reduction Type of reduction to apply to the loss. In almost all cases this should be "sum_over_batch_size". Supported options are "sum", "sum_over_batch_size" or None.
name Optional name for the loss instance.

Examples:

Standalone usage:

y_true = [[0, 1, 0], [0, 0, 1]]
y_pred = [[0.05, 0.95, 0], [0.1, 0.8, 0.1]]
# Using 'auto'/'sum_over_batch_size' reduction type.
cce = keras.losses.CategoricalCrossentropy()
cce(y_true, y_pred)
1.177
# Calling with 'sample_weight'.
cce(y_true, y_pred, sample_weight=np.array([0.3, 0.7]))
0.814
# Using 'sum' reduction type.
cce = keras.losses.CategoricalCrossentropy(
    reduction="sum")
cce(y_true, y_pred)
2.354
# Using 'none' reduction type.
cce = keras.losses.CategoricalCrossentropy(
    reduction=None)
cce(y_true, y_pred)
array([0.0513, 2.303], dtype=float32)

Usage with the compile() API:

model.compile(optimizer='sgd',
              loss=keras.losses.CategoricalCrossentropy())

Methods

call

View source

from_config

View source

get_config

View source

__call__

View source

Call self as a function.