View source on GitHub |
Computes the crossentropy loss between the labels and predictions.
Inherits From: Loss
tf.keras.losses.CategoricalCrossentropy(
from_logits=False,
label_smoothing=0.0,
axis=-1,
reduction='sum_over_batch_size',
name='categorical_crossentropy'
)
Used in the notebooks
Used in the guide | Used in the tutorials |
---|---|
Use this crossentropy loss function when there are two or more label
classes. We expect labels to be provided in a one_hot
representation. If
you want to provide labels as integers, please use
SparseCategoricalCrossentropy
loss. There should be num_classes
floating
point values per feature, i.e., the shape of both y_pred
and y_true
are
[batch_size, num_classes]
.
Examples:
Standalone usage:
y_true = [[0, 1, 0], [0, 0, 1]]
y_pred = [[0.05, 0.95, 0], [0.1, 0.8, 0.1]]
# Using 'auto'/'sum_over_batch_size' reduction type.
cce = keras.losses.CategoricalCrossentropy()
cce(y_true, y_pred)
1.177
# Calling with 'sample_weight'.
cce(y_true, y_pred, sample_weight=np.array([0.3, 0.7]))
0.814
# Using 'sum' reduction type.
cce = keras.losses.CategoricalCrossentropy(
reduction="sum")
cce(y_true, y_pred)
2.354
# Using 'none' reduction type.
cce = keras.losses.CategoricalCrossentropy(
reduction=None)
cce(y_true, y_pred)
array([0.0513, 2.303], dtype=float32)
Usage with the compile()
API:
model.compile(optimizer='sgd',
loss=keras.losses.CategoricalCrossentropy())
Methods
call
call(
y_true, y_pred
)
from_config
@classmethod
from_config( config )
get_config
get_config()
__call__
__call__(
y_true, y_pred, sample_weight=None
)
Call self as a function.