View source on GitHub |
Computes the cross-entropy loss between true labels and predicted labels.
Inherits From: Loss
tf.keras.losses.BinaryCrossentropy(
from_logits=False,
label_smoothing=0.0,
axis=-1,
reduction='sum_over_batch_size',
name='binary_crossentropy'
)
Used in the notebooks
Used in the guide | Used in the tutorials |
---|---|
Use this cross-entropy loss for binary (0 or 1) classification applications. The loss function requires the following inputs:
y_true
(true label): This is either 0 or 1.y_pred
(predicted value): This is the model's prediction, i.e, a single floating-point value which either represents a logit, (i.e, value in [-inf, inf] whenfrom_logits=True
) or a probability (i.e, value in [0., 1.] whenfrom_logits=False
).
Args | |
---|---|
from_logits
|
Whether to interpret y_pred as a tensor of
logit values. By default, we
assume that y_pred is probabilities (i.e., values in [0, 1]).
|
label_smoothing
|
Float in range [0, 1]. When 0, no smoothing occurs.
When > 0, we compute the loss between the predicted labels
and a smoothed version of the true labels, where the smoothing
squeezes the labels towards 0.5. Larger values of
label_smoothing correspond to heavier smoothing.
|
axis
|
The axis along which to compute crossentropy (the features axis).
Defaults to -1 .
|
reduction
|
Type of reduction to apply to the loss. In almost all cases
this should be "sum_over_batch_size" .
Supported options are "sum" , "sum_over_batch_size" or None .
|
name
|
Optional name for the loss instance. |
Examples:
Recommended Usage: (set from_logits=True
)
With compile()
API:
model.compile(
loss=keras.losses.BinaryCrossentropy(from_logits=True),
...
)
As a standalone function:
# Example 1: (batch_size = 1, number of samples = 4)
y_true = [0, 1, 0, 0]
y_pred = [-18.6, 0.51, 2.94, -12.8]
bce = keras.losses.BinaryCrossentropy(from_logits=True)
bce(y_true, y_pred)
0.865
# Example 2: (batch_size = 2, number of samples = 4)
y_true = [[0, 1], [0, 0]]
y_pred = [[-18.6, 0.51], [2.94, -12.8]]
# Using default 'auto'/'sum_over_batch_size' reduction type.
bce = keras.losses.BinaryCrossentropy(from_logits=True)
bce(y_true, y_pred)
0.865
# Using 'sample_weight' attribute
bce(y_true, y_pred, sample_weight=[0.8, 0.2])
0.243
# Using 'sum' reduction` type.
bce = keras.losses.BinaryCrossentropy(from_logits=True,
reduction="sum")
bce(y_true, y_pred)
1.730
# Using 'none' reduction type.
bce = keras.losses.BinaryCrossentropy(from_logits=True,
reduction=None)
bce(y_true, y_pred)
array([0.235, 1.496], dtype=float32)
Default Usage: (set from_logits=False
)
# Make the following updates to the above "Recommended Usage" section
# 1. Set `from_logits=False`
keras.losses.BinaryCrossentropy() # OR ...('from_logits=False')
# 2. Update `y_pred` to use probabilities instead of logits
y_pred = [0.6, 0.3, 0.2, 0.8] # OR [[0.6, 0.3], [0.2, 0.8]]
Methods
call
call(
y_true, y_pred
)
from_config
@classmethod
from_config( config )
get_config
get_config()
__call__
__call__(
y_true, y_pred, sample_weight=None
)
Call self as a function.