View source on GitHub |
A preprocessing layer which hashes and bins categorical features.
Inherits From: Layer
, Operation
tf.keras.layers.Hashing(
num_bins,
mask_value=None,
salt=None,
output_mode='int',
sparse=False,
**kwargs
)
Used in the notebooks
Used in the guide | Used in the tutorials |
---|---|
This layer transforms categorical inputs to hashed output. It element-wise
converts a ints or strings to ints in a fixed range. The stable hash
function uses tensorflow::ops::Fingerprint
to produce the same output
consistently across all platforms.
This layer uses FarmHash64 by default, which provides a consistent hashed output across different platforms and is stable across invocations, regardless of device and context, by mixing the input bits thoroughly.
If you want to obfuscate the hashed output, you can also pass a random
salt
argument in the constructor. In that case, the layer will use the
SipHash64 hash function, with
the salt
value serving as additional input to the hash function.
Example (FarmHash64)
layer = keras.layers.Hashing(num_bins=3)
inp = [['A'], ['B'], ['C'], ['D'], ['E']]
layer(inp)
array([[1],
[0],
[1],
[1],
[2]])>
Example (FarmHash64) with a mask value
layer = keras.layers.Hashing(num_bins=3, mask_value='')
inp = [['A'], ['B'], [''], ['C'], ['D']]
layer(inp)
array([[1],
[1],
[0],
[2],
[2]])
Example (SipHash64)
layer = keras.layers.Hashing(num_bins=3, salt=[133, 137])
inp = [['A'], ['B'], ['C'], ['D'], ['E']]
layer(inp)
array([[1],
[2],
[1],
[0],
[2]])
Example (Siphash64 with a single integer, same as salt=[133, 133]
)
layer = keras.layers.Hashing(num_bins=3, salt=133)
inp = [['A'], ['B'], ['C'], ['D'], ['E']]
layer(inp)
array([[0],
[0],
[2],
[1],
[0]])
Input shape | |
---|---|
A single string, a list of strings, or an int32 or int64 tensor
of shape (batch_size, ...,) .
|
Output shape | |
---|---|
An int32 tensor of shape (batch_size, ...) .
|
Reference:
Methods
from_config
@classmethod
from_config( config )
Creates a layer from its config.
This method is the reverse of get_config
,
capable of instantiating the same layer from the config
dictionary. It does not handle layer connectivity
(handled by Network), nor weights (handled by set_weights
).
Args | |
---|---|
config
|
A Python dictionary, typically the output of get_config. |
Returns | |
---|---|
A layer instance. |
symbolic_call
symbolic_call(
*args, **kwargs
)