View source on GitHub |
A preprocessing layer which encodes integer features.
Inherits From: Layer
, Operation
tf.keras.layers.CategoryEncoding(
num_tokens=None, output_mode='multi_hot', sparse=False, **kwargs
)
Used in the notebooks
Used in the guide | Used in the tutorials |
---|---|
This layer provides options for condensing data into a categorical encoding
when the total number of tokens are known in advance. It accepts integer
values as inputs, and it outputs a dense or sparse representation of those
inputs. For integer inputs where the total number of tokens is not known,
use keras.layers.IntegerLookup
instead.
Examples:
One-hot encoding data
layer = keras.layers.CategoryEncoding(
num_tokens=4, output_mode="one_hot")
layer([3, 2, 0, 1])
array([[0., 0., 0., 1.],
[0., 0., 1., 0.],
[1., 0., 0., 0.],
[0., 1., 0., 0.]]>
Multi-hot encoding data
layer = keras.layers.CategoryEncoding(
num_tokens=4, output_mode="multi_hot")
layer([[0, 1], [0, 0], [1, 2], [3, 1]])
array([[1., 1., 0., 0.],
[1., 0., 0., 0.],
[0., 1., 1., 0.],
[0., 1., 0., 1.]]>
Using weighted inputs in "count"
mode
layer = keras.layers.CategoryEncoding(
num_tokens=4, output_mode="count")
count_weights = np.array([[.1, .2], [.1, .1], [.2, .3], [.4, .2]])
layer([[0, 1], [0, 0], [1, 2], [3, 1]], count_weights=count_weights)
array([[0.1, 0.2, 0. , 0. ],
[0.2, 0. , 0. , 0. ],
[0. , 0.2, 0.3, 0. ],
[0. , 0.2, 0. , 0.4]]>
Methods
from_config
@classmethod
from_config( config )
Creates a layer from its config.
This method is the reverse of get_config
,
capable of instantiating the same layer from the config
dictionary. It does not handle layer connectivity
(handled by Network), nor weights (handled by set_weights
).
Args | |
---|---|
config
|
A Python dictionary, typically the output of get_config. |
Returns | |
---|---|
A layer instance. |
symbolic_call
symbolic_call(
*args, **kwargs
)