tf.keras.initializers.TruncatedNormal
Stay organized with collections
Save and categorize content based on your preferences.
Initializer that generates a truncated normal distribution.
Inherits From: Initializer
tf.keras.initializers.TruncatedNormal(
mean=0.0, stddev=0.05, seed=None
)
Used in the notebooks
The values generated are similar to values from a
RandomNormal
initializer, except that values more
than two standard deviations from the mean are
discarded and re-drawn.
Examples:
# Standalone usage:
initializer = TruncatedNormal(mean=0., stddev=1.)
values = initializer(shape=(2, 2))
# Usage in a Keras layer:
initializer = TruncatedNormal(mean=0., stddev=1.)
layer = Dense(3, kernel_initializer=initializer)
Args |
mean
|
A python scalar or a scalar keras tensor. Mean of the random
values to generate.
|
stddev
|
A python scalar or a scalar keras tensor. Standard deviation of
the random values to generate.
|
seed
|
A Python integer or instance of
keras.backend.SeedGenerator .
Used to make the behavior of the initializer
deterministic. Note that an initializer seeded with an integer
or None (unseeded) will produce the same random values
across multiple calls. To get different random values
across multiple calls, use as seed an instance
of keras.backend.SeedGenerator .
|
Methods
clone
View source
clone()
from_config
View source
@classmethod
from_config(
config
)
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
Args |
config
|
A Python dictionary, the output of get_config() .
|
Returns |
An Initializer instance.
|
get_config
View source
get_config()
Returns the initializer's configuration as a JSON-serializable dict.
Returns |
A JSON-serializable Python dict.
|
__call__
View source
__call__(
shape, dtype=None
)
Returns a tensor object initialized as specified by the initializer.
Args |
shape
|
Shape of the tensor.
|
dtype
|
Optional dtype of the tensor.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-06-07 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-06-07 UTC."],[],[]]