View source on GitHub |
Stop training when a monitored metric has stopped improving.
Inherits From: Callback
tf.keras.callbacks.EarlyStopping(
monitor='val_loss',
min_delta=0,
patience=0,
verbose=0,
mode='auto',
baseline=None,
restore_best_weights=False,
start_from_epoch=0
)
Used in the notebooks
Used in the guide | Used in the tutorials |
---|---|
Assuming the goal of a training is to minimize the loss. With this, the
metric to be monitored would be 'loss'
, and mode would be 'min'
. A
model.fit()
training loop will check at end of every epoch whether
the loss is no longer decreasing, considering the min_delta
and
patience
if applicable. Once it's found no longer decreasing,
model.stop_training
is marked True and the training terminates.
The quantity to be monitored needs to be available in logs
dict.
To make it so, pass the loss or metrics at model.compile()
.
Example:
callback = keras.callbacks.EarlyStopping(monitor='loss',
patience=3)
# This callback will stop the training when there is no improvement in
# the loss for three consecutive epochs.
model = keras.models.Sequential([keras.layers.Dense(10)])
model.compile(keras.optimizers.SGD(), loss='mse')
history = model.fit(np.arange(100).reshape(5, 20), np.zeros(5),
epochs=10, batch_size=1, callbacks=[callback],
verbose=0)
len(history.history['loss']) # Only 4 epochs are run.
4
Attributes | |
---|---|
model
|
Methods
get_monitor_value
get_monitor_value(
logs
)
on_batch_begin
on_batch_begin(
batch, logs=None
)
A backwards compatibility alias for on_train_batch_begin
.
on_batch_end
on_batch_end(
batch, logs=None
)
A backwards compatibility alias for on_train_batch_end
.
on_epoch_begin
on_epoch_begin(
epoch, logs=None
)
Called at the start of an epoch.
Subclasses should override for any actions to run. This function should only be called during TRAIN mode.
Args | |
---|---|
epoch
|
Integer, index of epoch. |
logs
|
Dict. Currently no data is passed to this argument for this method but that may change in the future. |
on_epoch_end
on_epoch_end(
epoch, logs=None
)
Called at the end of an epoch.
Subclasses should override for any actions to run. This function should only be called during TRAIN mode.
Args | |
---|---|
epoch
|
Integer, index of epoch. |
logs
|
Dict, metric results for this training epoch, and for the
validation epoch if validation is performed. Validation result
keys are prefixed with val_ . For training epoch, the values of
the Model 's metrics are returned. Example:
{'loss': 0.2, 'accuracy': 0.7} .
|
on_predict_batch_begin
on_predict_batch_begin(
batch, logs=None
)
Called at the beginning of a batch in predict
methods.
Subclasses should override for any actions to run.
Note that if the steps_per_execution
argument to compile
in
Model
is set to N
, this method will only be called every
N
batches.
Args | |
---|---|
batch
|
Integer, index of batch within the current epoch. |
logs
|
Dict. Currently no data is passed to this argument for this method but that may change in the future. |
on_predict_batch_end
on_predict_batch_end(
batch, logs=None
)
Called at the end of a batch in predict
methods.
Subclasses should override for any actions to run.
Note that if the steps_per_execution
argument to compile
in
Model
is set to N
, this method will only be called every
N
batches.
Args | |
---|---|
batch
|
Integer, index of batch within the current epoch. |
logs
|
Dict. Aggregated metric results up until this batch. |
on_predict_begin
on_predict_begin(
logs=None
)
Called at the beginning of prediction.
Subclasses should override for any actions to run.
Args | |
---|---|
logs
|
Dict. Currently no data is passed to this argument for this method but that may change in the future. |
on_predict_end
on_predict_end(
logs=None
)
Called at the end of prediction.
Subclasses should override for any actions to run.
Args | |
---|---|
logs
|
Dict. Currently no data is passed to this argument for this method but that may change in the future. |
on_test_batch_begin
on_test_batch_begin(
batch, logs=None
)
Called at the beginning of a batch in evaluate
methods.
Also called at the beginning of a validation batch in the fit
methods, if validation data is provided.
Subclasses should override for any actions to run.
Note that if the steps_per_execution
argument to compile
in
Model
is set to N
, this method will only be called every
N
batches.
Args | |
---|---|
batch
|
Integer, index of batch within the current epoch. |
logs
|
Dict. Currently no data is passed to this argument for this method but that may change in the future. |
on_test_batch_end
on_test_batch_end(
batch, logs=None
)
Called at the end of a batch in evaluate
methods.
Also called at the end of a validation batch in the fit
methods, if validation data is provided.
Subclasses should override for any actions to run.
Note that if the steps_per_execution
argument to compile
in
Model
is set to N
, this method will only be called every
N
batches.
Args | |
---|---|
batch
|
Integer, index of batch within the current epoch. |
logs
|
Dict. Aggregated metric results up until this batch. |
on_test_begin
on_test_begin(
logs=None
)
Called at the beginning of evaluation or validation.
Subclasses should override for any actions to run.
Args | |
---|---|
logs
|
Dict. Currently no data is passed to this argument for this method but that may change in the future. |
on_test_end
on_test_end(
logs=None
)
Called at the end of evaluation or validation.
Subclasses should override for any actions to run.
Args | |
---|---|
logs
|
Dict. Currently the output of the last call to
on_test_batch_end() is passed to this argument for this method
but that may change in the future.
|
on_train_batch_begin
on_train_batch_begin(
batch, logs=None
)
Called at the beginning of a training batch in fit
methods.
Subclasses should override for any actions to run.
Note that if the steps_per_execution
argument to compile
in
Model
is set to N
, this method will only be called every
N
batches.
Args | |
---|---|
batch
|
Integer, index of batch within the current epoch. |
logs
|
Dict. Currently no data is passed to this argument for this method but that may change in the future. |
on_train_batch_end
on_train_batch_end(
batch, logs=None
)
Called at the end of a training batch in fit
methods.
Subclasses should override for any actions to run.
Note that if the steps_per_execution
argument to compile
in
Model
is set to N
, this method will only be called every
N
batches.
Args | |
---|---|
batch
|
Integer, index of batch within the current epoch. |
logs
|
Dict. Aggregated metric results up until this batch. |
on_train_begin
on_train_begin(
logs=None
)
Called at the beginning of training.
Subclasses should override for any actions to run.
Args | |
---|---|
logs
|
Dict. Currently no data is passed to this argument for this method but that may change in the future. |
on_train_end
on_train_end(
logs=None
)
Called at the end of training.
Subclasses should override for any actions to run.
Args | |
---|---|
logs
|
Dict. Currently the output of the last call to
on_epoch_end() is passed to this argument for this method but
that may change in the future.
|
set_model
set_model(
model
)
set_params
set_params(
params
)