Adjust the brightness of images by a random factor deterministically.
tf.image.stateless_random_brightness(
image, max_delta, seed
)
Used in the notebooks
Equivalent to adjust_brightness()
using a delta
randomly picked in the
interval [-max_delta, max_delta)
.
Guarantees the same results given the same seed
independent of how many
times the function is called, and independent of global seed settings (e.g.
tf.random.set_seed
).
Usage Example:
x = [[[1.0, 2.0, 3.0],
[4.0, 5.0, 6.0]],
[[7.0, 8.0, 9.0],
[10.0, 11.0, 12.0]]]
seed = (1, 2)
tf.image.stateless_random_brightness(x, 0.2, seed)
<tf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=
array([[[ 1.1376241, 2.1376243, 3.1376243],
[ 4.1376243, 5.1376243, 6.1376243]],
[[ 7.1376243, 8.137624 , 9.137624 ],
[10.137624 , 11.137624 , 12.137624 ]]], dtype=float32)>
Args |
image
|
An image or images to adjust.
|
max_delta
|
float, must be non-negative.
|
seed
|
A shape [2] Tensor, the seed to the random number generator. Must have
dtype int32 or int64 . (When using XLA, only int32 is allowed.)
|
Returns |
The brightness-adjusted image(s).
|
Raises |
ValueError
|
if max_delta is negative.
|