View source on GitHub |
Decorator to override default implementation for unary elementwise APIs.
tf.experimental.dispatch_for_unary_elementwise_apis(
x_type
)
Used in the notebooks
Used in the guide |
---|
The decorated function (known as the "elementwise api handler") overrides
the default implementation for any unary elementwise API whenever the value
for the first argument (typically named x
) matches the type annotation
x_type
. The elementwise api handler is called with two arguments:
elementwise_api_handler(api_func, x)
Where api_func
is a function that takes a single parameter and performs the
elementwise operation (e.g., tf.abs
), and x
is the first argument to the
elementwise api.
The following example shows how this decorator can be used to update all
unary elementwise operations to handle a MaskedTensor
type:
class MaskedTensor(tf.experimental.ExtensionType):
values: tf.Tensor
mask: tf.Tensor
@dispatch_for_unary_elementwise_apis(MaskedTensor)
def unary_elementwise_api_handler(api_func, x):
return MaskedTensor(api_func(x.values), x.mask)
mt = MaskedTensor([1, -2, -3], [True, False, True])
abs_mt = tf.abs(mt)
print(f"values={abs_mt.values.numpy()}, mask={abs_mt.mask.numpy()}")
values=[1 2 3], mask=[ True False True]
For unary elementwise operations that take extra arguments beyond x
, those
arguments are not passed to the elementwise api handler, but are
automatically added when api_func
is called. E.g., in the following
example, the dtype
parameter is not passed to
unary_elementwise_api_handler
, but is added by api_func
.
ones_mt = tf.ones_like(mt, dtype=tf.float32)
print(f"values={ones_mt.values.numpy()}, mask={ones_mt.mask.numpy()}")
values=[1.0 1.0 1.0], mask=[ True False True]
Args | |
---|---|
x_type
|
A type annotation indicating when the api handler should be called.
See dispatch_for_api for a list of supported annotation types.
|
Returns | |
---|---|
A decorator. |
Registered APIs
The unary elementwise APIs are:
<