View source on GitHub |
Represents a value that may or may not be present.
A tf.experimental.Optional
can represent the result of an operation that may
fail as a value, rather than raising an exception and halting execution. For
example, tf.data.Iterator.get_next_as_optional()
returns a
tf.experimental.Optional
that either contains the next element of an
iterator if one exists, or an "empty" value that indicates the end of the
sequence has been reached.
tf.experimental.Optional
can only be used with values that are convertible
to tf.Tensor
or tf.CompositeTensor
.
One can create a tf.experimental.Optional
from a value using the
from_value()
method:
optional = tf.experimental.Optional.from_value(42)
print(optional.has_value())
tf.Tensor(True, shape=(), dtype=bool)
print(optional.get_value())
tf.Tensor(42, shape=(), dtype=int32)
or without a value using the empty()
method:
optional = tf.experimental.Optional.empty(
tf.TensorSpec(shape=(), dtype=tf.int32, name=None))
print(optional.has_value())
tf.Tensor(False, shape=(), dtype=bool)
Methods
empty
@staticmethod
empty( element_spec )
Returns an Optional
that has no value.
optional = tf.experimental.Optional.empty(
tf.TensorSpec(shape=(), dtype=tf.int32, name=None))
print(optional.has_value())
tf.Tensor(False, shape=(), dtype=bool)
Args | |
---|---|
element_spec
|
A (nested) structure of tf.TypeSpec objects matching the
structure of an element of this optional.
|
Returns | |
---|---|
A tf.experimental.Optional with no value.
|
from_value
@staticmethod
from_value( value )
Returns a tf.experimental.Optional
that wraps the given value.
optional = tf.experimental.Optional.from_value(42)
print(optional.has_value())
tf.Tensor(True, shape=(), dtype=bool)
print(optional.get_value())
tf.Tensor(42, shape=(), dtype=int32)
Args | |
---|---|
value
|
A value to wrap. The value must be convertible to tf.Tensor or
tf.CompositeTensor .
|
Returns | |
---|---|
A tf.experimental.Optional that wraps value .
|
get_value
@abc.abstractmethod
get_value( name=None )
Returns the value wrapped by this optional.
If this optional does not have a value (i.e. self.has_value()
evaluates to
False
), this operation will raise tf.errors.InvalidArgumentError
at
runtime.
optional = tf.experimental.Optional.from_value(42)
print(optional.get_value())
tf.Tensor(42, shape=(), dtype=int32)
Args | |
---|---|
name
|
(Optional.) A name for the created operation. |
Returns | |
---|---|
The wrapped value. |
has_value
@abc.abstractmethod
has_value( name=None )
Returns a tensor that evaluates to True
if this optional has a value.
optional = tf.experimental.Optional.from_value(42)
print(optional.has_value())
tf.Tensor(True, shape=(), dtype=bool)
Args | |
---|---|
name
|
(Optional.) A name for the created operation. |
Returns | |
---|---|
A scalar tf.Tensor of type tf.bool .
|