Use this transformation to produce a dataset that contains the same elements
as the input, but silently drops any elements that caused an error. For
example:
dataset=tf.data.Dataset.from_tensor_slices([1.,2.,0.,4.])# Computing `tf.debugging.check_numerics(1. / 0.)` will raise anInvalidArgumentError.dataset=dataset.map(lambdax:tf.debugging.check_numerics(1./x,"error"))# Using `ignore_errors()` will drop the element that causes an error.dataset=dataset.apply(tf.data.experimental.ignore_errors())# ==> {1., 0.5, 0.2}
Args:
log_warning: (Optional.) A 'tf.bool' scalar indicating whether ignored
errors should be logged to stderr. Defaults to 'False'.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-04-26 UTC."],[],[]]