View source on GitHub |
Returns x + y element-wise.
tf.math.add(
x, y, name=None
)
Used in the notebooks
Used in the guide | Used in the tutorials |
---|---|
Example usages below.
Add a scalar and a list:
x = [1, 2, 3, 4, 5]
y = 1
tf.add(x, y)
<tf.Tensor: shape=(5,), dtype=int32, numpy=array([2, 3, 4, 5, 6],
dtype=int32)>
Note that binary +
operator can be used instead:
x = tf.convert_to_tensor([1, 2, 3, 4, 5])
y = tf.convert_to_tensor(1)
x + y
<tf.Tensor: shape=(5,), dtype=int32, numpy=array([2, 3, 4, 5, 6],
dtype=int32)>
Add a tensor and a list of same shape:
x = [1, 2, 3, 4, 5]
y = tf.constant([1, 2, 3, 4, 5])
tf.add(x, y)
<tf.Tensor: shape=(5,), dtype=int32,
numpy=array([ 2, 4, 6, 8, 10], dtype=int32)>
For example,
x = tf.constant([1, 2], dtype=tf.int8)
y = [2**7 + 1, 2**7 + 2]
tf.add(x, y)
<tf.Tensor: shape=(2,), dtype=int8, numpy=array([-126, -124], dtype=int8)>
When adding two input values of different shapes, Add
follows NumPy
broadcasting rules. The two input array shapes are compared element-wise.
Starting with the trailing dimensions, the two dimensions either have to be
equal or one of them needs to be 1
.
For example,
x = np.ones(6).reshape(1, 2, 1, 3)
y = np.ones(6).reshape(2, 1, 3, 1)
tf.add(x, y).shape.as_list()
[2, 2, 3, 3]
Another example with two arrays of different dimension.
x = np.ones([1, 2, 1, 4])
y = np.ones([3, 4])
tf.add(x, y).shape.as_list()
[1, 2, 3, 4]
The reduction version of this elementwise operation is tf.math.reduce_sum
Args | |
---|---|
x
|
A tf.Tensor . Must be one of the following types: bfloat16, half,
float16, float32, float64, uint8, uint16, uint32, uint64, int8, int16,
int32, int64, complex64, complex128, string.
|
y
|
A tf.Tensor . Must have the same type as x.
|
name
|
A name for the operation (optional) |