View source on GitHub |
Represents the type of the elements in a Tensor
.
Inherits From: TraceType
tf.dtypes.DType(
type_enum, handle_data=None
)
DType
's are used to specify the output data type for operations which
require it, or to inspect the data type of existing Tensor
's.
Examples:
tf.constant(1, dtype=tf.int64)
<tf.Tensor: shape=(), dtype=int64, numpy=1>
tf.constant(1.0).dtype
tf.float32
See tf.dtypes
for a complete list of DType
's defined.
Attributes | |
---|---|
as_datatype_enum
|
Returns a types_pb2.DataType enum value based on this data type.
|
as_numpy_dtype
|
Returns a Python type object based on this DType .
|
base_dtype
|
Returns a non-reference DType based on this DType (for TF1).
Programs written for TensorFlow 2.x do not need this attribute.
It exists only for compatibility with TensorFlow 1.x, which used
reference |
is_bool
|
Returns whether this is a boolean data type. |
is_complex
|
Returns whether this is a complex floating point type. |
is_floating
|
Returns whether this is a (non-quantized, real) floating point type. |
is_integer
|
Returns whether this is a (non-quantized) integer type. |
is_numeric
|
Returns whether this is a numeric data type. |
is_numpy_compatible
|
Returns whether this data type has a compatible NumPy data type. |
is_quantized
|
Returns whether this is a quantized data type. |
is_unsigned
|
Returns whether this type is unsigned.
Non-numeric, unordered, and quantized types are not considered unsigned, and
this function returns |
limits
|
Return intensity limits, i.e.
(min, max) tuple, of the dtype. Args: clip_negative : bool, optional If True, clip the negative range (i.e. return 0 for min intensity) even if the image dtype allows negative values. Returns min, max : tuple Lower and upper intensity limits. |
max
|
Returns the maximum representable value in this data type. |
min
|
Returns the minimum representable value in this data type. |
name
|
|
real_dtype
|
Returns the DType corresponding to this DType 's real part.
|
size
|
Methods
experimental_as_proto
experimental_as_proto() -> types_pb2.SerializedDType
Returns a proto representation of the Dtype instance.
experimental_from_proto
@classmethod
experimental_from_proto( proto: types_pb2.SerializedDType ) -> 'DType'
Returns a Dtype instance based on the serialized proto.
experimental_type_proto
@classmethod
experimental_type_proto() -> Type[types_pb2.SerializedDType]
Returns the type of proto associated with DType serialization.
is_compatible_with
is_compatible_with(
other
)
Returns True if the other
DType will be converted to this DType (TF1).
Programs written for TensorFlow 2.x do not need this function.
Instead, they can do equality comparison on DType
objects directly:
tf.as_dtype(this) == tf.as_dtype(other)
.
This function exists only for compatibility with TensorFlow 1.x, where it
additionally allows conversion from a reference type (used by
tf.compat.v1.Variable
) to its base type.
Args | |
---|---|
other
|
A DType (or object that may be converted to a DType ).
|
Returns | |
---|---|
True if a Tensor of the other DType will be implicitly converted to
this DType .
|
is_subtype_of
is_subtype_of(
other: tf.types.experimental.TraceType
) -> bool
See tf.types.experimental.TraceType base class.
most_specific_common_supertype
most_specific_common_supertype(
types: Sequence[tf.types.experimental.TraceType
]
) -> Optional['DType']
See tf.types.experimental.TraceType base class.
__eq__
__eq__(
other
)
Returns True iff this DType refers to the same type as other
.
__ne__
__ne__(
other
)
Returns True iff self != other.