TensorFlow C++ API Reference

array_ops

Members

tensorflow::ops::BatchToSpace BatchToSpace for 4-D tensors of type T.
tensorflow::ops::BatchToSpaceND BatchToSpace for N-D tensors of type T.
tensorflow::ops::Bitcast Bitcasts a tensor from one type to another without copying data.
tensorflow::ops::BroadcastDynamicShape Return the shape of s0 op s1 with broadcast.
tensorflow::ops::BroadcastTo Broadcast an array for a compatible shape.
tensorflow::ops::CheckNumerics Checks a tensor for NaN and Inf values.
tensorflow::ops::Concat Concatenates tensors along one dimension.
tensorflow::ops::ConjugateTranspose Shuffle dimensions of x according to a permutation and conjugate the result.
tensorflow::ops::DebugGradientIdentity Identity op for gradient debugging.
tensorflow::ops::DebugGradientRefIdentity Identity op for gradient debugging.
tensorflow::ops::DeepCopy Makes a copy of x.
tensorflow::ops::DepthToSpace DepthToSpace for tensors of type T.
tensorflow::ops::Dequantize Dequantize the 'input' tensor into a float or bfloat16 Tensor.
tensorflow::ops::Diag Returns a diagonal tensor with a given diagonal values.
tensorflow::ops::DiagPart Returns the diagonal part of the tensor.
tensorflow::ops::EditDistance Computes the (possibly normalized) Levenshtein Edit Distance.
tensorflow::ops::Empty Creates a tensor with the given shape.
tensorflow::ops::EnsureShape Ensures that the tensor's shape matches the expected shape.
tensorflow::ops::ExpandDims Inserts a dimension of 1 into a tensor's shape.
tensorflow::ops::ExtractImagePatches Extract patches from images and put them in the "depth" output dimension.
tensorflow::ops::ExtractVolumePatches Extract patches from input and put them in the "depth" output dimension.
tensorflow::ops::FakeQuantWithMinMaxArgs Fake-quantize the 'inputs' tensor, type float to 'outputs' tensor of same shape and type.
tensorflow::ops::FakeQuantWithMinMaxArgsGradient Compute gradients for a FakeQuantWithMinMaxArgs operation.
tensorflow::ops::FakeQuantWithMinMaxVars Fake-quantize the 'inputs' tensor of type float via global float scalars.
tensorflow::ops::FakeQuantWithMinMaxVarsGradient Compute gradients for a FakeQuantWithMinMaxVars operation.
tensorflow::ops::FakeQuantWithMinMaxVarsPerChannel Fake-quantize the 'inputs' tensor of type float via per-channel floats.
tensorflow::ops::FakeQuantWithMinMaxVarsPerChannelGradient Compute gradients for a FakeQuantWithMinMaxVarsPerChannel operation.
tensorflow::ops::Fill Creates a tensor filled with a scalar value.
tensorflow::ops::Fingerprint Generates fingerprint values.
tensorflow::ops::Gather Gather slices from params according to indices.
tensorflow::ops::GatherNd Gather slices from params into a Tensor with shape specified by indices.
tensorflow::ops::GatherV2 Gather slices from params axis axis according to indices.
tensorflow::ops::GuaranteeConst Gives a guarantee to the TF runtime that the input tensor is a constant.
tensorflow::ops::Identity Return a tensor with the same shape and contents as the input tensor or value.
tensorflow::ops::IdentityN Returns a list of tensors with the same shapes and contents as the input.
tensorflow::ops::ImmutableConst Returns immutable tensor from memory region.
tensorflow::ops::InplaceAdd Adds v into specified rows of x.
tensorflow::ops::InplaceSub Subtracts v into specified rows of x.
tensorflow::ops::InplaceUpdate Updates specified rows 'i' with values 'v'.
tensorflow::ops::InvertPermutation Computes the inverse permutation of a tensor.
tensorflow::ops::MatrixBandPart Copy a tensor setting everything outside a central band in each innermost matrix to zero.
tensorflow::ops::MatrixDiag Returns a batched diagonal tensor with a given batched diagonal values.
tensorflow::ops::MatrixDiagPart Returns the batched diagonal part of a batched tensor.
tensorflow::ops::MatrixDiagPartV2 Returns the batched diagonal part of a batched tensor.
tensorflow::ops::MatrixDiagPartV3 Returns the batched diagonal part of a batched tensor.
tensorflow::ops::MatrixDiagV2 Returns a batched diagonal tensor with given batched diagonal values.
tensorflow::ops::MatrixDiagV3 Returns a batched diagonal tensor with given batched diagonal values.
tensorflow::ops::MatrixSetDiag Returns a batched matrix tensor with new batched diagonal values.
tensorflow::ops::MatrixSetDiagV2 Returns a batched matrix tensor with new batched diagonal values.
tensorflow::ops::MatrixSetDiagV3 Returns a batched matrix tensor with new batched diagonal values.
tensorflow::ops::MirrorPad Pads a tensor with mirrored values.
tensorflow::ops::OneHot Returns a one-hot tensor.
tensorflow::ops::OnesLike Returns a tensor of ones with the same shape and type as x.
tensorflow::ops::Pad Pads a tensor with zeros.
tensorflow::ops::PadV2 Pads a tensor.
tensorflow::ops::ParallelConcat Concatenates a list of N tensors along the first dimension.
tensorflow::ops::Placeholder A placeholder op for a value that will be fed into the computation.
tensorflow::ops::PlaceholderWithDefault A placeholder op that passes through input when its output is not fed.
tensorflow::ops::PreventGradient An identity op that triggers an error if a gradient is requested.
tensorflow::ops::QuantizeAndDequantizeV2 Quantizes then dequantizes a tensor.
tensorflow::ops::QuantizeAndDequantizeV3 Quantizes then dequantizes a tensor.
tensorflow::ops::QuantizeAndDequantizeV4 Quantizes then dequantizes a tensor.
tensorflow::ops::QuantizeAndDequantizeV4Grad Returns the gradient of QuantizeAndDequantizeV4.
tensorflow::ops::QuantizeV2 Quantize the 'input' tensor of type float to 'output' tensor of type 'T'.
tensorflow::ops::QuantizedConcat Concatenates quantized tensors along one dimension.
tensorflow::ops::QuantizedInstanceNorm Quantized Instance normalization.
tensorflow::ops::SetDiff1D Computes the difference between two lists of numbers or strings.
tensorflow::ops::Stack Packs a list of N rank-R tensors into one rank-(R+1) tensor.
tensorflow::ops::Where Reshapes a quantized tensor as per the Reshape op.
tensorflow::ops::ZerosLike Returns a tensor of zeros with the same shape and type as x.

candidate_sampling_ops

Members

tensorflow::ops::AllCandidateSampler Generates labels for candidate sampling with a learned unigram distribution.
tensorflow::ops::ComputeAccidentalHits Computes the ids of the positions in sampled_candidates that match true_labels.
tensorflow::ops::FixedUnigramCandidateSampler Generates labels for candidate sampling with a learned unigram distribution.
tensorflow::ops::LearnedUnigramCandidateSampler Generates labels for candidate sampling with a learned unigram distribution.
tensorflow::ops::LogUniformCandidateSampler Generates labels for candidate sampling with a log-uniform distribution.
tensorflow::ops::UniformCandidateSampler Generates labels for candidate sampling with a uniform distribution.

control_flow_ops

Members

tensorflow::ops::Abort Raise a exception to abort the process when called.
tensorflow::ops::ControlTrigger Does nothing.
tensorflow::ops::LoopCond Forwards the input to the output.
tensorflow::ops::Merge Forwards the value of an available tensor from inputs to output.
tensorflow::ops::NextIteration Makes its input available to the next iteration.
tensorflow::ops::RefNextIteration Makes its input available to the next iteration.
tensorflow::ops::RefSelect Forwards the indexth element of inputs to output.
tensorflow::ops::RefSwitch Forwards the ref tensor data to the output port determined by pred.
tensorflow::ops::Switch Forwards data to the output port determined by pred.

core

Members

tensorflow::ClientSession A ClientSession object lets the caller drive the evaluation of the TensorFlow graph constructed with the C++ API.
tensorflow::Input Represents a tensor value that can be used as an operand to an Operation.
tensorflow::InputList A type for representing the input to ops that require a list of tensors.
tensorflow::Operation Represents a node in the computation graph.
tensorflow::Output Represents a tensor value produced by an Operation.
tensorflow::Scope A Scope object represents a set of related TensorFlow ops that have the same properties such as a common name prefix.
tensorflow::TensorBuffer

data_flow_ops

Members

tensorflow::ops::AccumulatorApplyGradient Applies a gradient to a given accumulator.
tensorflow::ops::AccumulatorNumAccumulated Returns the number of gradients aggregated in the given accumulators.
tensorflow::ops::AccumulatorSetGlobalStep Updates the accumulator with a new value for global_step.
tensorflow::ops::AccumulatorTakeGradient Extracts the average gradient in the given ConditionalAccumulator.
tensorflow::ops::Barrier Defines a barrier that persists across different graph executions.
tensorflow::ops::BarrierClose Closes the given barrier.
tensorflow::ops::BarrierIncompleteSize Computes the number of incomplete elements in the given barrier.
tensorflow::ops::BarrierInsertMany For each key, assigns the respective value to the specified component.
tensorflow::ops::BarrierReadySize Computes the number of complete elements in the given barrier.
tensorflow::ops::BarrierTakeMany Takes the given number of completed elements from a barrier.
tensorflow::ops::ConditionalAccumulator A conditional accumulator for aggregating gradients.
tensorflow::ops::DeleteSessionTensor Delete the tensor specified by its handle in the session.
tensorflow::ops::DynamicPartition Partitions data into num_partitions tensors using indices from partitions.
tensorflow::ops::DynamicStitch Interleave the values from the data tensors into a single tensor.
tensorflow::ops::FIFOQueue A queue that produces elements in first-in first-out order.
tensorflow::ops::GetSessionHandle Store the input tensor in the state of the current session.
tensorflow::ops::GetSessionHandleV2 Store the input tensor in the state of the current session.
tensorflow::ops::GetSessionTensor Get the value of the tensor specified by its handle.
tensorflow::ops::MapClear Op removes all elements in the underlying container.
tensorflow::ops::MapIncompleteSize Op returns the number of incomplete elements in the underlying container.
tensorflow::ops::MapPeek Op peeks at the values at the specified key.
tensorflow::ops::MapSize Op returns the number of elements in the underlying container.
tensorflow::ops::MapStage Stage (key, values) in the underlying container which behaves like a hashtable.
tensorflow::ops::MapUnstage Op removes and returns the values associated with the key.
tensorflow::ops::MapUnstageNoKey Op removes and returns a random (key, value)
tensorflow::ops::OrderedMapClear Op removes all elements in the underlying container.
tensorflow::ops::OrderedMapIncompleteSize Op returns the number of incomplete elements in the underlying container.
tensorflow::ops::OrderedMapPeek Op peeks at the values at the specified key.
tensorflow::ops::OrderedMapSize Op returns the number of elements in the underlying container.
tensorflow::ops::OrderedMapStage Stage (key, values) in the underlying container which behaves like a ordered.
tensorflow::ops::OrderedMapUnstage Op removes and returns the values associated with the key.
tensorflow::ops::OrderedMapUnstageNoKey Op removes and returns the (key, value) element with the smallest.
tensorflow::ops::PaddingFIFOQueue A queue that produces elements in first-in first-out order.
tensorflow::ops::ParallelDynamicStitch Interleave the values from the data tensors into a single tensor.
tensorflow::ops::PriorityQueue A queue that produces elements sorted by the first component value.
tensorflow::ops::QueueClose Closes the given queue.
tensorflow::ops::QueueDequeue Dequeues a tuple of one or more tensors from the given queue.
tensorflow::ops::QueueDequeueMany Dequeues n tuples of one or more tensors from the given queue.
tensorflow::ops::QueueDequeueUpTo Dequeues n tuples of one or more tensors from the given queue.
tensorflow::ops::QueueEnqueue Enqueues a tuple of one or more tensors in the given queue.
tensorflow::ops::QueueEnqueueMany Enqueues zero or more tuples of one or more tensors in the given queue.
tensorflow::ops::QueueIsClosed Returns true if queue is closed.
tensorflow::ops::QueueIsClosedV2 Returns true if queue is closed.
tensorflow::ops::QueueSize Computes the number of elements in the given queue.
tensorflow::ops::RandomShuffleQueue A queue that randomizes the order of elements.
tensorflow::ops::RecordInput Emits randomized records.
tensorflow::ops::SparseAccumulatorApplyGradient Applies a sparse gradient to a given accumulator.
tensorflow::ops::SparseAccumulatorTakeGradient Extracts the average sparse gradient in a SparseConditionalAccumulator.
tensorflow::ops::SparseConditionalAccumulator A conditional accumulator for aggregating sparse gradients.
tensorflow::ops::Stage Stage values similar to a lightweight Enqueue.
tensorflow::ops::StageClear Op removes all elements in the underlying container.
tensorflow::ops::StagePeek Op peeks at the values at the specified index.
tensorflow::ops::StageSize Op returns the number of elements in the underlying container.
tensorflow::ops::TensorArray An array of Tensors of given size.
tensorflow::ops::TensorArrayClose Delete the TensorArray from its resource container.
tensorflow::ops::TensorArrayConcat Concat the elements from the TensorArray into value value.
tensorflow::ops::TensorArrayGather Gather specific elements from the TensorArray into output value.
tensorflow::ops::TensorArrayGrad Creates a TensorArray for storing the gradients of values in the given handle.
tensorflow::ops::TensorArrayGradWithShape Creates a TensorArray for storing multiple gradients of values in the given handle.
tensorflow::ops::TensorArrayRead Read an element from the TensorArray into output value.
tensorflow::ops::TensorArrayScatter Scatter the data from the input value into specific TensorArray elements.
tensorflow::ops::TensorArraySize Get the current size of the TensorArray.
tensorflow::ops::TensorArraySplit Split the data from the input value into TensorArray elements.
tensorflow::ops::TensorArrayWrite Push an element onto the tensor_array.
tensorflow::ops::Unstage Op is similar to a lightweight Dequeue.

image_ops

Members

tensorflow::ops::AdjustContrast Adjust the contrast of one or more images.
tensorflow::ops::AdjustHue Adjust the hue of one or more images.
tensorflow::ops::AdjustSaturation Adjust the saturation of one or more images.
tensorflow::ops::CombinedNonMaxSuppression Greedily selects a subset of bounding boxes in descending order of score,.
tensorflow::ops::CropAndResize Extracts crops from the input image tensor and resizes them.
tensorflow::ops::CropAndResizeGradBoxes Computes the gradient of the crop_and_resize op wrt the input boxes tensor.
tensorflow::ops::CropAndResizeGradImage Computes the gradient of the crop_and_resize op wrt the input image tensor.
tensorflow::ops::DecodeAndCropJpeg Decode and Crop a JPEG-encoded image to a uint8 tensor.
tensorflow::ops::DecodeBmp Decode the first frame of a BMP-encoded image to a uint8 tensor.
tensorflow::ops::DecodeGif Decode the frame(s) of a GIF-encoded image to a uint8 tensor.
tensorflow::ops::DecodeImage Function for decode_bmp, decode_gif, decode_jpeg, and decode_png.
tensorflow::ops::DecodeJpeg Decode a JPEG-encoded image to a uint8 tensor.
tensorflow::ops::DecodePng Decode a PNG-encoded image to a uint8 or uint16 tensor.
tensorflow::ops::DrawBoundingBoxes Draw bounding boxes on a batch of images.
tensorflow::ops::DrawBoundingBoxesV2 Draw bounding boxes on a batch of images.
tensorflow::ops::EncodeJpeg JPEG-encode an image.
tensorflow::ops::EncodeJpegVariableQuality JPEG encode input image with provided compression quality.
tensorflow::ops::EncodePng PNG-encode an image.
tensorflow::ops::ExtractGlimpse Extracts a glimpse from the input tensor.
tensorflow::ops::ExtractJpegShape Extract the shape information of a JPEG-encoded image.
tensorflow::ops::HSVToRGB Convert one or more images from HSV to RGB.
tensorflow::ops::NonMaxSuppression Greedily selects a subset of bounding boxes in descending order of score,.
tensorflow::ops::NonMaxSuppressionV2 Greedily selects a subset of bounding boxes in descending order of score,.
tensorflow::ops::NonMaxSuppressionV3 Greedily selects a subset of bounding boxes in descending order of score,.
tensorflow::ops::NonMaxSuppressionV4 Greedily selects a subset of bounding boxes in descending order of score,.
tensorflow::ops::NonMaxSuppressionV5 Greedily selects a subset of bounding boxes in descending order of score,.
tensorflow::ops::NonMaxSuppressionWithOverlaps Greedily selects a subset of bounding boxes in descending order of score,.
tensorflow::ops::QuantizedResizeBilinear Resize quantized images to size using quantized bilinear interpolation.
tensorflow::ops::RGBToHSV Converts one or more images from RGB to HSV.
tensorflow::ops::ResizeArea Resize images to size using area interpolation.
tensorflow::ops::ResizeBicubic Resize images to size using bicubic interpolation.
tensorflow::ops::ResizeBilinear Resize images to size using bilinear interpolation.
tensorflow::ops::ResizeNearestNeighbor Resize images to size using nearest neighbor interpolation.
tensorflow::ops::SampleDistortedBoundingBox Generate a single randomly distorted bounding box for an image.
tensorflow::ops::SampleDistortedBoundingBoxV2 Generate a single randomly distorted bounding box for an image.
tensorflow::ops::ScaleAndTranslate TODO: add doc.
tensorflow::ops::StatelessSampleDistortedBoundingBox Generate a randomly distorted bounding box for an image deterministically.

io_ops

Members

tensorflow::ops::FixedLengthRecordReader A Reader that outputs fixed-length records from a file.
tensorflow::ops::IdentityReader A Reader that outputs the queued work as both the key and value.
tensorflow::ops::LMDBReader A Reader that outputs the records from a LMDB file.
tensorflow::ops::MatchingFiles Returns the set of files matching one or more glob patterns.
tensorflow::ops::MergeV2Checkpoints V2 format specific: merges the metadata files of sharded checkpoints.
tensorflow::ops::ReadFile Reads and outputs the entire contents of the input filename.
tensorflow::ops::ReaderNumRecordsProduced Returns the number of records this Reader has produced.
tensorflow::ops::ReaderNumWorkUnitsCompleted Returns the number of work units this Reader has finished processing.
tensorflow::ops::ReaderRead Returns the next record (key, value pair) produced by a Reader.
tensorflow::ops::ReaderReadUpTo Returns up to num_records (key, value) pairs produced by a Reader.
tensorflow::ops::ReaderReset Restore a Reader to its initial clean state.
tensorflow::ops::ReaderRestoreState Restore a reader to a previously saved state.
tensorflow::ops::ReaderSerializeState Produce a string tensor that encodes the state of a Reader.
tensorflow::ops::Restore Restores a tensor from checkpoint files.
tensorflow::ops::RestoreSlice Restores a tensor from checkpoint files.
tensorflow::ops::RestoreV2 Restores tensors from a V2 checkpoint.
tensorflow::ops::Save Saves the input tensors to disk.
tensorflow::ops::SaveSlices Saves input tensors slices to disk.
tensorflow::ops::SaveV2 Saves tensors in V2 checkpoint format.
tensorflow::ops::ShardedFilename Generate a sharded filename.
tensorflow::ops::ShardedFilespec Generate a glob pattern matching all sharded file names.
tensorflow::ops::TFRecordReader A Reader that outputs the records from a TensorFlow Records file.
tensorflow::ops::TextLineReader A Reader that outputs the lines of a file delimited by '\n'.
tensorflow::ops::WholeFileReader A Reader that outputs the entire contents of a file as a value.
tensorflow::ops::WriteFile Writes contents to the file at input filename.

logging_ops

Members

tensorflow::ops::Assert Asserts that the given condition is true.
tensorflow::ops::HistogramSummary Outputs a Summary protocol buffer with a histogram.
tensorflow::ops::MergeSummary Merges summaries.
tensorflow::ops::Print Prints a list of tensors.
tensorflow::ops::PrintV2 Prints a string scalar.
tensorflow::ops::ScalarSummary Outputs a Summary protocol buffer with scalar values.
tensorflow::ops::TensorSummary Outputs a Summary protocol buffer with a tensor.
tensorflow::ops::TensorSummaryV2 Outputs a Summary protocol buffer with a tensor and per-plugin data.
tensorflow::ops::Timestamp Provides the time since epoch in seconds.

math_ops

Members

tensorflow::ops::Abs Computes the absolute value of a tensor.
tensorflow::ops::AccumulateNV2 Returns the element-wise sum of a list of tensors.
tensorflow::ops::Acos Computes acos of x element-wise.
tensorflow::ops::Acosh Computes inverse hyperbolic cosine of x element-wise.
tensorflow::ops::Add Returns x + y element-wise.
tensorflow::ops::AddN Add all input tensors element wise.
tensorflow::ops::AddV2 Returns x + y element-wise.
tensorflow::ops::All Computes the "logical and" of elements across dimensions of a tensor.
tensorflow::ops::Angle Returns the argument of a complex number.
tensorflow::ops::Any Computes the "logical or" of elements across dimensions of a tensor.
tensorflow::ops::ApproximateEqual Returns the truth value of abs(x-y) < tolerance element-wise.
tensorflow::ops::ArgMax Returns the index with the largest value across dimensions of a tensor.
tensorflow::ops::ArgMin Returns the index with the smallest value across dimensions of a tensor.
tensorflow::ops::Asin Computes the trignometric inverse sine of x element-wise.
tensorflow::ops::Asinh Computes inverse hyperbolic sine of x element-wise.
tensorflow::ops::Atan Computes the trignometric inverse tangent of x element-wise.
tensorflow::ops::Atan2 Computes arctangent of y/x element-wise, respecting signs of the arguments.
tensorflow::ops::Atanh Computes inverse hyperbolic tangent of x element-wise.
tensorflow::ops::BatchMatMul Multiplies slices of two tensors in batches.
tensorflow::ops::BatchMatMulV2 Multiplies slices of two tensors in batches.
tensorflow::ops::BatchMatMulV3 Multiplies slices of two tensors in batches.
tensorflow::ops::Betainc Compute the regularized incomplete beta integral \(I_x(a, b)\).
tensorflow::ops::Bincount Counts the number of occurrences of each value in an integer array.
tensorflow::ops::Bucketize Bucketizes 'input' based on 'boundaries'.
tensorflow::ops::Cast Cast x of type SrcT to y of DstT.
tensorflow::ops::Ceil Returns element-wise smallest integer not less than x.
tensorflow::ops::ClipByValue Clips tensor values to a specified min and max.
tensorflow::ops::Complex Converts two real numbers to a complex number.
tensorflow::ops::ComplexAbs Computes the complex absolute value of a tensor.
tensorflow::ops::Conj Returns the complex conjugate of a complex number.
tensorflow::ops::Cos Computes cos of x element-wise.
tensorflow::ops::Cosh Computes hyperbolic cosine of x element-wise.
tensorflow::ops::Cross Compute the pairwise cross product.
tensorflow::ops::Cumprod Compute the cumulative product of the tensor x along axis.
tensorflow::ops::Cumsum Compute the cumulative sum of the tensor x along axis.
tensorflow::ops::DenseBincount Counts the number of occurrences of each value in an integer array.
tensorflow::ops::Digamma Computes Psi, the derivative of Lgamma (the log of the absolute value of.
tensorflow::ops::Div Returns x / y element-wise.
tensorflow::ops::DivNoNan Returns 0 if the denominator is zero.
tensorflow::ops::Equal Returns the truth value of (x == y) element-wise.
tensorflow::ops::Erf Computes the Gauss error function of x element-wise.
tensorflow::ops::Erfc Computes the complementary error function of x element-wise.
tensorflow::ops::Erfinv TODO: add doc.
tensorflow::ops::EuclideanNorm Computes the euclidean norm of elements across dimensions of a tensor.
tensorflow::ops::Exp Computes exponential of x element-wise.
tensorflow::ops::Expm1 Computes exp(x) - 1 element-wise.
tensorflow::ops::Floor Returns element-wise largest integer not greater than x.
tensorflow::ops::FloorDiv Returns x // y element-wise.
tensorflow::ops::FloorMod Returns element-wise remainder of division.
tensorflow::ops::Greater Returns the truth value of (x > y) element-wise.
tensorflow::ops::GreaterEqual Returns the truth value of (x >= y) element-wise.
tensorflow::ops::HistogramFixedWidth Return histogram of values.
tensorflow::ops::Igamma Compute the lower regularized incomplete Gamma function P(a, x).
tensorflow::ops::Igammac Compute the upper regularized incomplete Gamma function Q(a, x).
tensorflow::ops::Imag Returns the imaginary part of a complex number.
tensorflow::ops::Inv Computes the reciprocal of x element-wise.
tensorflow::ops::IsFinite Returns which elements of x are finite.
tensorflow::ops::IsInf Returns which elements of x are Inf.
tensorflow::ops::IsNan Returns which elements of x are NaN.
tensorflow::ops::Less Returns the truth value of (x < y) element-wise.
tensorflow::ops::LessEqual Returns the truth value of (x <= y) element-wise.
tensorflow::ops::Lgamma Computes the log of the absolute value of Gamma(x) element-wise.
tensorflow::ops::Log Computes natural logarithm of x element-wise.
tensorflow::ops::Log1p Computes natural logarithm of (1 + x) element-wise.
tensorflow::ops::LogicalAnd Returns the truth value of x AND y element-wise.
tensorflow::ops::LogicalNot Returns the truth value of NOT x element-wise.
tensorflow::ops::LogicalOr Returns the truth value of x OR y element-wise.
tensorflow::ops::MatMul Multiply the matrix "a" by the matrix "b".
tensorflow::ops::Max Computes the maximum of elements across dimensions of a tensor.
tensorflow::ops::Maximum Returns the max of x and y (i.e.
tensorflow::ops::Mean Computes the mean of elements across dimensions of a tensor.
tensorflow::ops::Min Computes the minimum of elements across dimensions of a tensor.
tensorflow::ops::Minimum Returns the min of x and y (i.e.
tensorflow::ops::Mod Returns element-wise remainder of division.
tensorflow::ops::MulNoNan Returns x * y element-wise.
tensorflow::ops::Multiply Returns x * y element-wise.
tensorflow::ops::Ndtri TODO: add doc.
tensorflow::ops::Negate Computes numerical negative value element-wise.
tensorflow::ops::NextAfter Returns the next representable value of x1 in the direction of x2, element-wise.
tensorflow::ops::NotEqual Returns the truth value of (x != y) element-wise.
tensorflow::ops::Polygamma Compute the polygamma function \(\psi^{(n)}(x)\).
tensorflow::ops::Pow Computes the power of one value to another.
tensorflow::ops::Prod Computes the product of elements across dimensions of a tensor.
tensorflow::ops::QuantizeDownAndShrinkRange Convert the quantized 'input' tensor into a lower-precision 'output', using the.
tensorflow::ops::QuantizedAdd Returns x + y element-wise, working on quantized buffers.
tensorflow::ops::QuantizedMatMul Perform a quantized matrix multiplication of a by the matrix b.
tensorflow::ops::QuantizedMul Returns x * y element-wise, working on quantized buffers.
tensorflow::ops::RaggedBincount Counts the number of occurrences of each value in an integer array.
tensorflow::ops::Range Creates a sequence of numbers.
tensorflow::ops::Real Returns the real part of a complex number.
tensorflow::ops::RealDiv Returns x / y element-wise for real types.
tensorflow::ops::Reciprocal Computes the reciprocal of x element-wise.
tensorflow::ops::RequantizationRange Computes a range that covers the actual values present in a quantized tensor.
tensorflow::ops::Requantize Converts the quantized input tensor into a lower-precision output.
tensorflow::ops::Rint Returns element-wise integer closest to x.
tensorflow::ops::Round Rounds the values of a tensor to the nearest integer, element-wise.
tensorflow::ops::Rsqrt Computes reciprocal of square root of x element-wise.
tensorflow::ops::SegmentMax Computes the maximum along segments of a tensor.
tensorflow::ops::SegmentMaxV2 Computes the maximum along segments of a tensor.
tensorflow::ops::SegmentMean Computes the mean along segments of a tensor.
tensorflow::ops::SegmentMin Computes the minimum along segments of a tensor.
tensorflow::ops::SegmentMinV2 Computes the minimum along segments of a tensor.
tensorflow::ops::SegmentProd Computes the product along segments of a tensor.
tensorflow::ops::SegmentProdV2 Computes the product along segments of a tensor.
tensorflow::ops::SegmentSum Computes the sum along segments of a tensor.
tensorflow::ops::SegmentSumV2 Computes the sum along segments of a tensor.
tensorflow::ops::SelectV2 TODO: add doc.
tensorflow::ops::Sigmoid Computes sigmoid of x element-wise.
tensorflow::ops::Sign Returns an element-wise indication of the sign of a number.
tensorflow::ops::Sin Computes sine of x element-wise.
tensorflow::ops::Sinh Computes hyperbolic sine of x element-wise.
tensorflow::ops::SparseBincount Counts the number of occurrences of each value in an integer array.
tensorflow::ops::SparseMatMul Multiply matrix "a" by matrix "b".
tensorflow::ops::SparseSegmentMean Computes the mean along sparse segments of a tensor.
tensorflow::ops::SparseSegmentMeanGrad Computes gradients for SparseSegmentMean.
tensorflow::ops::SparseSegmentMeanGradV2 Computes gradients for SparseSegmentMean.
tensorflow::ops::SparseSegmentMeanWithNumSegments Computes the mean along sparse segments of a tensor.
tensorflow::ops::SparseSegmentSqrtN Computes the sum along sparse segments of a tensor divided by the sqrt of N.
tensorflow::ops::SparseSegmentSqrtNGrad Computes gradients for SparseSegmentSqrtN.
tensorflow::ops::SparseSegmentSqrtNGradV2 Computes gradients for SparseSegmentSqrtN.
tensorflow::ops::SparseSegmentSqrtNWithNumSegments Computes the sum along sparse segments of a tensor divided by the sqrt of N.
tensorflow::ops::SparseSegmentSum Computes the sum along sparse segments of a tensor.
tensorflow::ops::SparseSegmentSumGrad Computes gradients for SparseSegmentSum.
tensorflow::ops::SparseSegmentSumGradV2 Computes gradients for SparseSegmentSum.
tensorflow::ops::SparseSegmentSumWithNumSegments Computes the sum along sparse segments of a tensor.
tensorflow::ops::Sqrt Computes square root of x element-wise.
tensorflow::ops::Square Computes square of x element-wise.
tensorflow::ops::SquaredDifference Returns conj(x - y)(x - y) element-wise.
tensorflow::ops::Subtract Returns x - y element-wise.
tensorflow::ops::Sum Computes the sum of elements across dimensions of a tensor.
tensorflow::ops::Tan Computes tan of x element-wise.
tensorflow::ops::Tanh Computes hyperbolic tangent of x element-wise.
tensorflow::ops::TruncateDiv Returns x / y element-wise, rounded towards zero.
tensorflow::ops::TruncateMod Returns element-wise remainder of division.
tensorflow::ops::UnsortedSegmentMax Computes the maximum along segments of a tensor.
tensorflow::ops::UnsortedSegmentMin Computes the minimum along segments of a tensor.
tensorflow::ops::UnsortedSegmentProd Computes the product along segments of a tensor.
tensorflow::ops::UnsortedSegmentSum Computes the sum along segments of a tensor.
tensorflow::ops::Where3 Selects elements from x or y, depending on condition.
tensorflow::ops::Xdivy Returns 0 if x == 0, and x / y otherwise, elementwise.
tensorflow::ops::Xlog1py Returns 0 if x == 0, and x * log1p(y) otherwise, elementwise.
tensorflow::ops::Xlogy Returns 0 if x == 0, and x * log(y) otherwise, elementwise.
tensorflow::ops::Zeta Compute the Hurwitz zeta function \(\zeta(x, q)\).

nn_ops

Members

tensorflow::ops::ApproxTopK Returns min/max k values and their indices of the input operand in an approximate manner.
tensorflow::ops::AvgPool Performs average pooling on the input.
tensorflow::ops::AvgPool3D Performs 3D average pooling on the input.
tensorflow::ops::AvgPool3DGrad Computes gradients of average pooling function.
tensorflow::ops::BiasAdd Adds bias to value.
tensorflow::ops::BiasAddGrad The backward operation for "BiasAdd" on the "bias" tensor.
tensorflow::ops::Conv Computes a N-D convolution given (N+1+batch_dims)-D input and (N+2)-D filter tensors.
tensorflow::ops::Conv2D Computes a 2-D convolution given 4-D input and filter tensors.
tensorflow::ops::Conv2DBackpropFilter Computes the gradients of convolution with respect to the filter.
tensorflow::ops::Conv2DBackpropFilterV2 Computes the gradients of convolution with respect to the filter.
tensorflow::ops::Conv2DBackpropInput Computes the gradients of convolution with respect to the input.
tensorflow::ops::Conv2DBackpropInputV2 Computes the gradients of convolution with respect to the input.
tensorflow::ops::Conv3D Computes a 3-D convolution given 5-D input and filter tensors.
tensorflow::ops::Conv3DBackpropFilterV2 Computes the gradients of 3-D convolution with respect to the filter.
tensorflow::ops::Conv3DBackpropInputV2 Computes the gradients of 3-D convolution with respect to the input.
tensorflow::ops::DataFormatDimMap Returns the dimension index in the destination data format given the one in.
tensorflow::ops::DataFormatVecPermute Permute input tensor from src_format to dst_format.
tensorflow::ops::DepthwiseConv2dNative Computes a 2-D depthwise convolution given 4-D input and filter tensors.
tensorflow::ops::DepthwiseConv2dNativeBackpropFilter Computes the gradients of depthwise convolution with respect to the filter.
tensorflow::ops::DepthwiseConv2dNativeBackpropInput Computes the gradients of depthwise convolution with respect to the input.
tensorflow::ops::Dilation2D Computes the grayscale dilation of 4-D input and 3-D filter tensors.
tensorflow::ops::Dilation2DBackpropFilter Computes the gradient of morphological 2-D dilation with respect to the filter.
tensorflow::ops::Dilation2DBackpropInput Computes the gradient of morphological 2-D dilation with respect to the input.
tensorflow::ops::Elu Computes the exponential linear function.
tensorflow::ops::FractionalAvgPool Performs fractional average pooling on the input.
tensorflow::ops::FractionalMaxPool Performs fractional max pooling on the input.
tensorflow::ops::FusedBatchNorm Batch normalization.
tensorflow::ops::FusedBatchNormGrad Gradient for batch normalization.
tensorflow::ops::FusedBatchNormGradV2 Gradient for batch normalization.
tensorflow::ops::FusedBatchNormGradV3 Gradient for batch normalization.
tensorflow::ops::FusedBatchNormV2 Batch normalization.
tensorflow::ops::FusedBatchNormV3 Batch normalization.
tensorflow::ops::FusedPadConv2D Performs a padding as a preprocess during a convolution.
tensorflow::ops::FusedResizeAndPadConv2D Performs a resize and padding as a preprocess during a convolution.
tensorflow::ops::InTopK Says whether the targets are in the top K predictions.
tensorflow::ops::InTopKV2 Says whether the targets are in the top K predictions.
tensorflow::ops::L2Loss L2 Loss.
tensorflow::ops::LRN Local Response Normalization.
tensorflow::ops::LogSoftmax Computes log softmax activations.
tensorflow::ops::MaxPool Performs max pooling on the input.
tensorflow::ops::MaxPool3D Performs 3D max pooling on the input.
tensorflow::ops::MaxPool3DGrad Computes gradients of 3D max pooling function.
tensorflow::ops::MaxPool3DGradGrad Computes second-order gradients of the maxpooling function.
tensorflow::ops::MaxPoolGradGrad Computes second-order gradients of the maxpooling function.
tensorflow::ops::MaxPoolGradGradV2 Computes second-order gradients of the maxpooling function.
tensorflow::ops::MaxPoolGradGradWithArgmax Computes second-order gradients of the maxpooling function.
tensorflow::ops::MaxPoolGradV2 Computes gradients of the maxpooling function.
tensorflow::ops::MaxPoolV2 Performs max pooling on the input.
tensorflow::ops::MaxPoolWithArgmax Performs max pooling on the input and outputs both max values and indices.
tensorflow::ops::NthElement Finds values of the n-th order statistic for the last dimension.
tensorflow::ops::QuantizedAvgPool Produces the average pool of the input tensor for quantized types.
tensorflow::ops::QuantizedBatchNormWithGlobalNormalization Quantized Batch normalization.
tensorflow::ops::QuantizedBiasAdd Adds Tensor 'bias' to Tensor 'input' for Quantized types.
tensorflow::ops::QuantizedConv2D Computes a 2D convolution given quantized 4D input and filter tensors.
tensorflow::ops::QuantizedMaxPool Produces the max pool of the input tensor for quantized types.
tensorflow::ops::QuantizedRelu Computes Quantized Rectified Linear: max(features, 0)
tensorflow::ops::QuantizedRelu6 Computes Quantized Rectified Linear 6: min(max(features, 0), 6)
tensorflow::ops::QuantizedReluX Computes Quantized Rectified Linear X: min(max(features, 0), max_value)
tensorflow::ops::Relu Computes rectified linear: max(features, 0).
tensorflow::ops::Relu6 Computes rectified linear 6: min(max(features, 0), 6).
tensorflow::ops::Selu Computes scaled exponential linear: scale * alpha * (exp(features) - 1)
tensorflow::ops::Softmax Computes softmax activations.
tensorflow::ops::SoftmaxCrossEntropyWithLogits Computes softmax cross entropy cost and gradients to backpropagate.
tensorflow::ops::Softplus TODO: add doc.
tensorflow::ops::Softsign Computes softsign: features / (abs(features) + 1).
tensorflow::ops::SparseSoftmaxCrossEntropyWithLogits Computes softmax cross entropy cost and gradients to backpropagate.
tensorflow::ops::TopK Finds values and indices of the k largest elements for the last dimension.

no_op

Members

tensorflow::ops::NoOp Does nothing.

parsing_ops

Members

tensorflow::ops::DecodeCSV Convert CSV records to tensors.
tensorflow::ops::DecodeCompressed Decompress strings.
tensorflow::ops::DecodeJSONExample Convert JSON-encoded Example records to binary protocol buffer strings.
tensorflow::ops::DecodePaddedRaw Reinterpret the bytes of a string as a vector of numbers.
tensorflow::ops::DecodeRaw Reinterpret the bytes of a string as a vector of numbers.
tensorflow::ops::ParseExample Transforms a vector of brain.Example protos (as strings) into typed tensors.
tensorflow::ops::ParseExampleV2 Transforms a vector of tf.Example protos (as strings) into typed tensors.
tensorflow::ops::ParseSequenceExample Transforms a vector of brain.SequenceExample protos (as strings) into typed tensors.
tensorflow::ops::ParseSequenceExampleV2 Transforms a vector of tf.io.SequenceExample protos (as strings) into typed tensors.
tensorflow::ops::ParseSingleExample Transforms a tf.Example proto (as a string) into typed tensors.
tensorflow::ops::ParseSingleSequenceExample Transforms a scalar brain.SequenceExample proto (as strings) into typed tensors.
tensorflow::ops::ParseTensor Transforms a serialized tensorflow.TensorProto proto into a Tensor.
tensorflow::ops::SerializeTensor Transforms a Tensor into a serialized TensorProto proto.
tensorflow::ops::StringToNumber Converts each string in the input Tensor to the specified numeric type.

random_ops

Members

tensorflow::ops::Multinomial Draws samples from a multinomial distribution.
tensorflow::ops::ParameterizedTruncatedNormal Outputs random values from a normal distribution.
tensorflow::ops::RandomGamma Outputs random values from the Gamma distribution(s) described by alpha.
tensorflow::ops::RandomNormal Outputs random values from a normal distribution.
tensorflow::ops::RandomPoissonV2 Outputs random values from the Poisson distribution(s) described by rate.
tensorflow::ops::RandomShuffle Randomly shuffles a tensor along its first dimension.
tensorflow::ops::RandomUniform Outputs random values from a uniform distribution.
tensorflow::ops::RandomUniformInt Outputs random integers from a uniform distribution.
tensorflow::ops::TruncatedNormal Outputs random values from a truncated normal distribution.

sparse_ops

Members

tensorflow::ops::AddManySparseToTensorsMap Add an N-minibatch SparseTensor to a SparseTensorsMap, return N handles.
tensorflow::ops::AddSparseToTensorsMap Add a SparseTensor to a SparseTensorsMap return its handle.
tensorflow::ops::DeserializeManySparse Deserialize and concatenate SparseTensors from a serialized minibatch.
tensorflow::ops::DeserializeSparse Deserialize SparseTensor objects.
tensorflow::ops::SerializeManySparse Serialize an N-minibatch SparseTensor into an [N, 3]Tensor object.
tensorflow::ops::SerializeSparse Serialize a SparseTensor into a [3]Tensor object.
tensorflow::ops::SparseAdd Adds two SparseTensor objects to produce another SparseTensor.
tensorflow::ops::SparseAddGrad The gradient operator for the SparseAdd op.
tensorflow::ops::SparseConcat Concatenates a list of SparseTensor along the specified dimension.
tensorflow::ops::SparseCross Generates sparse cross from a list of sparse and dense tensors.
tensorflow::ops::SparseCrossHashed Generates sparse cross from a list of sparse and dense tensors.
tensorflow::ops::SparseCrossV2 Generates sparse cross from a list of sparse and dense tensors.
tensorflow::ops::SparseDenseCwiseAdd Adds up a SparseTensor and a dense Tensor, using these special rules:
tensorflow::ops::SparseDenseCwiseDiv Component-wise divides a SparseTensor by a dense Tensor.
tensorflow::ops::SparseDenseCwiseMul Component-wise multiplies a SparseTensor by a dense Tensor.
tensorflow::ops::SparseFillEmptyRows Fills empty rows in the input 2-D SparseTensor with a default value.
tensorflow::ops::SparseFillEmptyRowsGrad The gradient of SparseFillEmptyRows.
tensorflow::ops::SparseReduceMax Computes the max of elements across dimensions of a SparseTensor.
tensorflow::ops::SparseReduceMaxSparse Computes the max of elements across dimensions of a SparseTensor.
tensorflow::ops::SparseReduceSum Computes the sum of elements across dimensions of a SparseTensor.
tensorflow::ops::SparseReduceSumSparse Computes the sum of elements across dimensions of a SparseTensor.
tensorflow::ops::SparseReorder Reorders a SparseTensor into the canonical, row-major ordering.
tensorflow::ops::SparseReshape Reshapes a SparseTensor to represent values in a new dense shape.
tensorflow::ops::SparseSlice Slice a SparseTensor based on the start and size.
tensorflow::ops::SparseSliceGrad The gradient operator for the SparseSlice op.
tensorflow::ops::SparseSoftmax Applies softmax to a batched N-D SparseTensor.
tensorflow::ops::SparseSparseMaximum Returns the element-wise max of two SparseTensors.
tensorflow::ops::SparseSparseMinimum Returns the element-wise min of two SparseTensors.
tensorflow::ops::SparseSplit Split a SparseTensor into num_split tensors along one dimension.
tensorflow::ops::SparseTensorDenseAdd Adds up a SparseTensor and a dense Tensor, producing a dense Tensor.
tensorflow::ops::SparseTensorDenseMatMul Multiply SparseTensor (of rank 2) "A" by dense matrix "B".
tensorflow::ops::TakeManySparseFromTensorsMap Converts a sparse representation into a dense tensor.

state_ops

Members

tensorflow::ops::Assign Update 'ref' by assigning 'value' to it.
tensorflow::ops::AssignAdd Update 'ref' by adding 'value' to it.
tensorflow::ops::AssignSub Update 'ref' by subtracting 'value' from it.
tensorflow::ops::CountUpTo Increments 'ref' until it reaches 'limit'.
tensorflow::ops::DestroyTemporaryVariable Destroys the temporary variable and returns its final value.
tensorflow::ops::IsVariableInitialized Checks whether a tensor has been initialized.
tensorflow::ops::ResourceCountUpTo Increments variable pointed to by 'resource' until it reaches 'limit'.
tensorflow::ops::ResourceScatterNdAdd Applies sparse addition to individual values or slices in a Variable.
tensorflow::ops::ResourceScatterNdMax TODO: add doc.
tensorflow::ops::ResourceScatterNdMin TODO: add doc.
tensorflow::ops::ResourceScatterNdSub Applies sparse subtraction to individual values or slices in a Variable.
tensorflow::ops::ResourceScatterNdUpdate Applies sparse updates to individual values or slices within a given.
tensorflow::ops::ScatterAdd Adds sparse updates to a variable reference.
tensorflow::ops::ScatterDiv Divides a variable reference by sparse updates.
tensorflow::ops::ScatterMax Reduces sparse updates into a variable reference using the max operation.
tensorflow::ops::ScatterMin Reduces sparse updates into a variable reference using the min operation.
tensorflow::ops::ScatterMul Multiplies sparse updates into a variable reference.
tensorflow::ops::ScatterNdAdd Applies sparse addition to individual values or slices in a Variable.
tensorflow::ops::ScatterNdSub Applies sparse subtraction to individual values or slices in a Variable.
tensorflow::ops::ScatterNdUpdate Applies sparse updates to individual values or slices within a given.
tensorflow::ops::ScatterSub Subtracts sparse updates to a variable reference.
tensorflow::ops::ScatterUpdate Applies sparse updates to a variable reference.
tensorflow::ops::TemporaryVariable Returns a tensor that may be mutated, but only persists within a single step.
tensorflow::ops::Variable Holds state in the form of a tensor that persists across steps.

string_ops

Members

tensorflow::ops::AsString Converts each entry in the given tensor to strings.
tensorflow::ops::DecodeBase64 Decode web-safe base64-encoded strings.
tensorflow::ops::EncodeBase64 Encode strings into web-safe base64 format.
tensorflow::ops::ReduceJoin Joins a string Tensor across the given dimensions.
tensorflow::ops::RegexFullMatch Check if the input matches the regex pattern.
tensorflow::ops::RegexReplace Replaces matches of the pattern regular expression in input with the replacement string provided in rewrite.
tensorflow::ops::StringFormat Formats a string template using a list of tensors.
tensorflow::ops::StringJoin Joins the strings in the given list of string tensors into one tensor;.
tensorflow::ops::StringLength String lengths of input.
tensorflow::ops::StringLower Converts all uppercase characters into their respective lowercase replacements.
tensorflow::ops::StringNGrams Creates ngrams from ragged string data.
tensorflow::ops::StringSplit Split elements of input based on delimiter into a SparseTensor.
tensorflow::ops::StringSplitV2 Split elements of source based on sep into a SparseTensor.
tensorflow::ops::StringStrip Strip leading and trailing whitespaces from the Tensor.
tensorflow::ops::StringToHashBucket Converts each string in the input Tensor to its hash mod by a number of buckets.
tensorflow::ops::StringToHashBucketFast Converts each string in the input Tensor to its hash mod by a number of buckets.
tensorflow::ops::StringToHashBucketStrong Converts each string in the input Tensor to its hash mod by a number of buckets.
tensorflow::ops::StringUpper Converts all lowercase characters into their respective uppercase replacements.
tensorflow::ops::Substr Return substrings from Tensor of strings.
tensorflow::ops::UnicodeScript Determine the script codes of a given tensor of Unicode integer code points.
tensorflow::ops::UnicodeTranscode Transcode the input text from a source encoding to a destination encoding.

training_ops

Members

tensorflow::ops::ApplyAdadelta Update '*var' according to the adadelta scheme.
tensorflow::ops::ApplyAdagrad Update '*var' according to the adagrad scheme.
tensorflow::ops::ApplyAdagradDA Update '*var' according to the proximal adagrad scheme.
tensorflow::ops::ApplyAdam Update '*var' according to the Adam algorithm.
tensorflow::ops::ApplyAddSign Update '*var' according to the AddSign update.
tensorflow::ops::ApplyCenteredRMSProp Update '*var' according to the centered RMSProp algorithm.
tensorflow::ops::ApplyFtrl Update '*var' according to the Ftrl-proximal scheme.
tensorflow::ops::ApplyFtrlV2 Update '*var' according to the Ftrl-proximal scheme.
tensorflow::ops::ApplyGradientDescent Update '*var' by subtracting 'alpha' * 'delta' from it.
tensorflow::ops::ApplyMomentum Update '*var' according to the momentum scheme.
tensorflow::ops::ApplyPowerSign Update '*var' according to the AddSign update.
tensorflow::ops::ApplyProximalAdagrad Update '*var' and '*accum' according to FOBOS with Adagrad learning rate.
tensorflow::ops::ApplyProximalGradientDescent Update '*var' as FOBOS algorithm with fixed learning rate.
tensorflow::ops::ApplyRMSProp Update '*var' according to the RMSProp algorithm.
tensorflow::ops::ResourceApplyAdadelta Update '*var' according to the adadelta scheme.
tensorflow::ops::ResourceApplyAdagrad Update '*var' according to the adagrad scheme.
tensorflow::ops::ResourceApplyAdagradDA Update '*var' according to the proximal adagrad scheme.
tensorflow::ops::ResourceApplyAdam Update '*var' according to the Adam algorithm.
tensorflow::ops::ResourceApplyAdamWithAmsgrad Update '*var' according to the Adam algorithm.
tensorflow::ops::ResourceApplyAddSign Update '*var' according to the AddSign update.
tensorflow::ops::ResourceApplyCenteredRMSProp Update '*var' according to the centered RMSProp algorithm.
tensorflow::ops::ResourceApplyFtrl Update '*var' according to the Ftrl-proximal scheme.
tensorflow::ops::ResourceApplyFtrlV2 Update '*var' according to the Ftrl-proximal scheme.
tensorflow::ops::ResourceApplyGradientDescent Update '*var' by subtracting 'alpha' * 'delta' from it.
tensorflow::ops::ResourceApplyKerasMomentum Update '*var' according to the momentum scheme.
tensorflow::ops::ResourceApplyMomentum Update '*var' according to the momentum scheme.
tensorflow::ops::ResourceApplyPowerSign Update '*var' according to the AddSign update.
tensorflow::ops::ResourceApplyProximalAdagrad Update '*var' and '*accum' according to FOBOS with Adagrad learning rate.
tensorflow::ops::ResourceApplyProximalGradientDescent Update '*var' as FOBOS algorithm with fixed learning rate.
tensorflow::ops::ResourceApplyRMSProp Update '*var' according to the RMSProp algorithm.
tensorflow::ops::ResourceSparseApplyAdadelta var: Should be from a Variable().
tensorflow::ops::ResourceSparseApplyAdagrad Update relevant entries in '*var' and '*accum' according to the adagrad scheme.
tensorflow::ops::ResourceSparseApplyAdagradDA Update entries in '*var' and '*accum' according to the proximal adagrad scheme.
tensorflow::ops::ResourceSparseApplyCenteredRMSProp Update '*var' according to the centered RMSProp algorithm.
tensorflow::ops::ResourceSparseApplyFtrl Update relevant entries in '*var' according to the Ftrl-proximal scheme.
tensorflow::ops::ResourceSparseApplyFtrlV2 Update relevant entries in '*var' according to the Ftrl-proximal scheme.
tensorflow::ops::ResourceSparseApplyKerasMomentum Update relevant entries in '*var' and '*accum' according to the momentum scheme.
tensorflow::ops::ResourceSparseApplyMomentum Update relevant entries in '*var' and '*accum' according to the momentum scheme.
tensorflow::ops::ResourceSparseApplyProximalAdagrad Sparse update entries in '*var' and '*accum' according to FOBOS algorithm.
tensorflow::ops::ResourceSparseApplyProximalGradientDescent Sparse update '*var' as FOBOS algorithm with fixed learning rate.
tensorflow::ops::ResourceSparseApplyRMSProp Update '*var' according to the RMSProp algorithm.
tensorflow::ops::SparseApplyAdadelta var: Should be from a Variable().
tensorflow::ops::SparseApplyAdagrad Update relevant entries in '*var' and '*accum' according to the adagrad scheme.
tensorflow::ops::SparseApplyAdagradDA Update entries in '*var' and '*accum' according to the proximal adagrad scheme.
tensorflow::ops::SparseApplyCenteredRMSProp Update '*var' according to the centered RMSProp algorithm.
tensorflow::ops::SparseApplyFtrl Update relevant entries in '*var' according to the Ftrl-proximal scheme.
tensorflow::ops::SparseApplyFtrlV2 Update relevant entries in '*var' according to the Ftrl-proximal scheme.
tensorflow::ops::SparseApplyMomentum Update relevant entries in '*var' and '*accum' according to the momentum scheme.
tensorflow::ops::SparseApplyProximalAdagrad Sparse update entries in '*var' and '*accum' according to FOBOS algorithm.
tensorflow::ops::SparseApplyProximalGradientDescent Sparse update '*var' as FOBOS algorithm with fixed learning rate.
tensorflow::ops::SparseApplyRMSProp Update '*var' according to the RMSProp algorithm.

user_ops

Members

tensorflow::ops::Fact Output a fact about factorials.