حقوق الطبع والنشر 2021 The TF-Agents Authors.
عرض على TensorFlow.org | تشغيل في Google Colab | عرض المصدر على جيثب | تحميل دفتر |
مقدمة
يتمثل النمط الشائع في التعلم المعزز في تنفيذ سياسة في بيئة لعدد محدد من الخطوات أو الحلقات. يحدث هذا ، على سبيل المثال ، أثناء جمع البيانات وتقييمها وإنشاء مقطع فيديو للوكيل.
في حين أن هذا هو بسيط نسبيا إلى الكتابة في بيثون، هو أكثر تعقيدا إلى الكتابة والتصحيح في TensorFlow لأنها تنطوي على tf.while
الحلقات، tf.cond
و tf.control_dependencies
. ولذلك نحن ملخص هذه الفكرة من حلقة المدى في فئة تسمى driver
، وتوفير تطبيقات اختبارها بشكل جيد سواء في بيثون وTensorFlow.
بالإضافة إلى ذلك ، يتم حفظ البيانات التي يواجهها السائق في كل خطوة في مجموعة محددة تسمى المسار ويتم بثها إلى مجموعة من المراقبين مثل المخازن المؤقتة لإعادة التشغيل والقياسات. تتضمن هذه البيانات الملاحظة من البيئة ، والإجراء الذي أوصت به السياسة ، والمكافأة التي تم الحصول عليها ، ونوع الخطوة الحالية والتالية ، إلخ.
اقامة
إذا لم تقم بتثبيت وكلاء tf أو صالة الألعاب الرياضية حتى الآن ، فقم بتشغيل:
pip install tf-agents
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tf_agents.environments import suite_gym
from tf_agents.environments import tf_py_environment
from tf_agents.policies import random_py_policy
from tf_agents.policies import random_tf_policy
from tf_agents.metrics import py_metrics
from tf_agents.metrics import tf_metrics
from tf_agents.drivers import py_driver
from tf_agents.drivers import dynamic_episode_driver
سائقي بايثون
و PyDriver
الدرجة يأخذ بيئة الثعبان، وهي سياسة الثعبان وقائمة المراقبين إلى التحديث في كل خطوة. هو الأسلوب الرئيسي run()
والتقى، الخطوات التي البيئة باستخدام إجراءات من السياسة حتى واحد على الأقل من المعايير إنهاء التالية: عدد من الخطوات الروافد max_steps
أو عدد من الحلقات الروافد max_episodes
.
يتم التنفيذ تقريبًا على النحو التالي:
class PyDriver(object):
def __init__(self, env, policy, observers, max_steps=1, max_episodes=1):
self._env = env
self._policy = policy
self._observers = observers or []
self._max_steps = max_steps or np.inf
self._max_episodes = max_episodes or np.inf
def run(self, time_step, policy_state=()):
num_steps = 0
num_episodes = 0
while num_steps < self._max_steps and num_episodes < self._max_episodes:
# Compute an action using the policy for the given time_step
action_step = self._policy.action(time_step, policy_state)
# Apply the action to the environment and get the next step
next_time_step = self._env.step(action_step.action)
# Package information into a trajectory
traj = trajectory.Trajectory(
time_step.step_type,
time_step.observation,
action_step.action,
action_step.info,
next_time_step.step_type,
next_time_step.reward,
next_time_step.discount)
for observer in self._observers:
observer(traj)
# Update statistics to check termination
num_episodes += np.sum(traj.is_last())
num_steps += np.sum(~traj.is_boundary())
time_step = next_time_step
policy_state = action_step.state
return time_step, policy_state
الآن ، دعونا نفحص مثال تشغيل سياسة عشوائية على بيئة CartPole ، وحفظ النتائج في مخزن مؤقت لإعادة التشغيل وحساب بعض المقاييس.
env = suite_gym.load('CartPole-v0')
policy = random_py_policy.RandomPyPolicy(time_step_spec=env.time_step_spec(),
action_spec=env.action_spec())
replay_buffer = []
metric = py_metrics.AverageReturnMetric()
observers = [replay_buffer.append, metric]
driver = py_driver.PyDriver(
env, policy, observers, max_steps=20, max_episodes=1)
initial_time_step = env.reset()
final_time_step, _ = driver.run(initial_time_step)
print('Replay Buffer:')
for traj in replay_buffer:
print(traj)
print('Average Return: ', metric.result())
Replay Buffer: Trajectory( {'action': array(1), 'discount': array(1., dtype=float32), 'next_step_type': array(1, dtype=int32), 'observation': array([-0.01483762, -0.0301547 , -0.02482025, 0.00477367], dtype=float32), 'policy_info': (), 'reward': array(1., dtype=float32), 'step_type': array(0, dtype=int32)}) Trajectory( {'action': array(1), 'discount': array(1., dtype=float32), 'next_step_type': array(1, dtype=int32), 'observation': array([-0.01544072, 0.16531426, -0.02472478, -0.29563585], dtype=float32), 'policy_info': (), 'reward': array(1., dtype=float32), 'step_type': array(1, dtype=int32)}) Trajectory( {'action': array(1), 'discount': array(1., dtype=float32), 'next_step_type': array(1, dtype=int32), 'observation': array([-0.01213443, 0.3607798 , -0.0306375 , -0.5960129 ], dtype=float32), 'policy_info': (), 'reward': array(1., dtype=float32), 'step_type': array(1, dtype=int32)}) Trajectory( {'action': array(1), 'discount': array(1., dtype=float32), 'next_step_type': array(1, dtype=int32), 'observation': array([-0.00491884, 0.5563168 , -0.04255775, -0.8981868 ], dtype=float32), 'policy_info': (), 'reward': array(1., dtype=float32), 'step_type': array(1, dtype=int32)}) Trajectory( {'action': array(0), 'discount': array(1., dtype=float32), 'next_step_type': array(1, dtype=int32), 'observation': array([ 0.0062075 , 0.75198895, -0.06052149, -1.2039375 ], dtype=float32), 'policy_info': (), 'reward': array(1., dtype=float32), 'step_type': array(1, dtype=int32)}) Trajectory( {'action': array(0), 'discount': array(1., dtype=float32), 'next_step_type': array(1, dtype=int32), 'observation': array([ 0.02124728, 0.5576993 , -0.08460024, -0.9308191 ], dtype=float32), 'policy_info': (), 'reward': array(1., dtype=float32), 'step_type': array(1, dtype=int32)}) Trajectory( {'action': array(0), 'discount': array(1., dtype=float32), 'next_step_type': array(1, dtype=int32), 'observation': array([ 0.03240127, 0.36381477, -0.10321662, -0.6658752 ], dtype=float32), 'policy_info': (), 'reward': array(1., dtype=float32), 'step_type': array(1, dtype=int32)}) Trajectory( {'action': array(1), 'discount': array(1., dtype=float32), 'next_step_type': array(1, dtype=int32), 'observation': array([ 0.03967756, 0.17026839, -0.11653412, -0.40739253], dtype=float32), 'policy_info': (), 'reward': array(1., dtype=float32), 'step_type': array(1, dtype=int32)}) Trajectory( {'action': array(0), 'discount': array(1., dtype=float32), 'next_step_type': array(1, dtype=int32), 'observation': array([ 0.04308293, 0.36683324, -0.12468197, -0.7344236 ], dtype=float32), 'policy_info': (), 'reward': array(1., dtype=float32), 'step_type': array(1, dtype=int32)}) Trajectory( {'action': array(0), 'discount': array(1., dtype=float32), 'next_step_type': array(1, dtype=int32), 'observation': array([ 0.0504196 , 0.17363413, -0.13937044, -0.48343614], dtype=float32), 'policy_info': (), 'reward': array(1., dtype=float32), 'step_type': array(1, dtype=int32)}) Trajectory( {'action': array(1), 'discount': array(1., dtype=float32), 'next_step_type': array(1, dtype=int32), 'observation': array([ 0.05389228, -0.0192741 , -0.14903916, -0.23772195], dtype=float32), 'policy_info': (), 'reward': array(1., dtype=float32), 'step_type': array(1, dtype=int32)}) Trajectory( {'action': array(1), 'discount': array(1., dtype=float32), 'next_step_type': array(1, dtype=int32), 'observation': array([ 0.0535068 , 0.17762792, -0.1537936 , -0.5734562 ], dtype=float32), 'policy_info': (), 'reward': array(1., dtype=float32), 'step_type': array(1, dtype=int32)}) Trajectory( {'action': array(0), 'discount': array(1., dtype=float32), 'next_step_type': array(1, dtype=int32), 'observation': array([ 0.05705936, 0.37453365, -0.16526273, -0.910366 ], dtype=float32), 'policy_info': (), 'reward': array(1., dtype=float32), 'step_type': array(1, dtype=int32)}) Trajectory( {'action': array(0), 'discount': array(1., dtype=float32), 'next_step_type': array(1, dtype=int32), 'observation': array([ 0.06455003, 0.18198717, -0.18347006, -0.6738478 ], dtype=float32), 'policy_info': (), 'reward': array(1., dtype=float32), 'step_type': array(1, dtype=int32)}) Trajectory( {'action': array(0), 'discount': array(1., dtype=float32), 'next_step_type': array(1, dtype=int32), 'observation': array([ 0.06818977, -0.01017502, -0.19694701, -0.44408032], dtype=float32), 'policy_info': (), 'reward': array(1., dtype=float32), 'step_type': array(1, dtype=int32)}) Trajectory( {'action': array(0), 'discount': array(0., dtype=float32), 'next_step_type': array(2, dtype=int32), 'observation': array([ 0.06798627, -0.20204504, -0.20582862, -0.21936782], dtype=float32), 'policy_info': (), 'reward': array(1., dtype=float32), 'step_type': array(1, dtype=int32)}) Trajectory( {'action': array(1), 'discount': array(1., dtype=float32), 'next_step_type': array(0, dtype=int32), 'observation': array([ 0.06394537, -0.39372152, -0.21021597, 0.00199082], dtype=float32), 'policy_info': (), 'reward': array(0., dtype=float32), 'step_type': array(2, dtype=int32)}) Average Return: 16.0
محركات TensorFlow
لدينا أيضا السائقين في TensorFlow التي هي مماثلة لسائقي بيثون وظيفيا، ولكن البيئات استخدام TF والسياسات TF والمراقبين TF وغيرها ونحن لديها حاليا السائقين 2 TensorFlow: DynamicStepDriver
، الذي ينهي بعد عدد معين من الخطوات (صالحة) البيئة و DynamicEpisodeDriver
، الذي ينتهي بعد عدد معين من الحلقات. دعونا نلقي نظرة على مثال من الحلقة الديناميكية في العمل.
env = suite_gym.load('CartPole-v0')
tf_env = tf_py_environment.TFPyEnvironment(env)
tf_policy = random_tf_policy.RandomTFPolicy(action_spec=tf_env.action_spec(),
time_step_spec=tf_env.time_step_spec())
num_episodes = tf_metrics.NumberOfEpisodes()
env_steps = tf_metrics.EnvironmentSteps()
observers = [num_episodes, env_steps]
driver = dynamic_episode_driver.DynamicEpisodeDriver(
tf_env, tf_policy, observers, num_episodes=2)
# Initial driver.run will reset the environment and initialize the policy.
final_time_step, policy_state = driver.run()
print('final_time_step', final_time_step)
print('Number of Steps: ', env_steps.result().numpy())
print('Number of Episodes: ', num_episodes.result().numpy())
final_time_step TimeStep( {'discount': <tf.Tensor: shape=(1,), dtype=float32, numpy=array([1.], dtype=float32)>, 'observation': <tf.Tensor: shape=(1, 4), dtype=float32, numpy=array([[0.01182632, 0.01372784, 0.03056967, 0.04454206]], dtype=float32)>, 'reward': <tf.Tensor: shape=(1,), dtype=float32, numpy=array([0.], dtype=float32)>, 'step_type': <tf.Tensor: shape=(1,), dtype=int32, numpy=array([0], dtype=int32)>}) Number of Steps: 24 Number of Episodes: 2
# Continue running from previous state
final_time_step, _ = driver.run(final_time_step, policy_state)
print('final_time_step', final_time_step)
print('Number of Steps: ', env_steps.result().numpy())
print('Number of Episodes: ', num_episodes.result().numpy())
final_time_step TimeStep( {'discount': <tf.Tensor: shape=(1,), dtype=float32, numpy=array([1.], dtype=float32)>, 'observation': <tf.Tensor: shape=(1, 4), dtype=float32, numpy= array([[-0.02565088, 0.04813434, -0.04199163, 0.03810809]], dtype=float32)>, 'reward': <tf.Tensor: shape=(1,), dtype=float32, numpy=array([0.], dtype=float32)>, 'step_type': <tf.Tensor: shape=(1,), dtype=int32, numpy=array([0], dtype=int32)>}) Number of Steps: 70 Number of Episodes: 4