TensorFlow Addons Layers: WeightNormalization

Xem trên TensorFlow.org Chạy trong Google Colab Xem nguồn trên GitHub Tải xuống sổ ghi chép

Tổng quat

Sổ tay này sẽ trình bày cách sử dụng lớp Chuẩn hóa Trọng lượng và cách nó có thể cải thiện sự hội tụ.

Cân nặng

Một tái phân bổ đơn giản để tăng tốc đào tạo các mạng thần kinh sâu:

Tim Salimans, Diederik P. Kingma (2016)

Bằng cách thống kê lại các trọng số theo cách này, bạn cải thiện điều kiện của bài toán tối ưu hóa và tăng tốc độ hội tụ của đường xuống dốc ngẫu nhiên. Việc phân tích lại của chúng tôi được lấy cảm hứng từ quá trình chuẩn hóa hàng loạt nhưng không giới thiệu bất kỳ sự phụ thuộc nào giữa các ví dụ trong một minibatch. Điều này có nghĩa là phương pháp của chúng tôi cũng có thể được áp dụng thành công cho các mô hình lặp lại như LSTM và các ứng dụng nhạy cảm với tiếng ồn như học tăng cường sâu hoặc mô hình tổng quát, mà việc chuẩn hóa hàng loạt ít phù hợp hơn. Mặc dù phương pháp của chúng tôi đơn giản hơn nhiều, nhưng nó vẫn cung cấp phần lớn tốc độ chuẩn hóa toàn bộ hàng loạt. Ngoài ra, chi phí tính toán của phương pháp của chúng tôi thấp hơn, cho phép thực hiện nhiều bước tối ưu hóa hơn trong cùng một khoảng thời gian.

https://arxiv.org/abs/1602.07868



Cài đặt

pip install -q -U tensorflow-addons
import tensorflow as tf
import tensorflow_addons as tfa
import numpy as np
from matplotlib import pyplot as plt
# Hyper Parameters
batch_size = 32
epochs = 10
num_classes=10

Xây dựng mô hình

# Standard ConvNet
reg_model = tf.keras.Sequential([
    tf.keras.layers.Conv2D(6, 5, activation='relu'),
    tf.keras.layers.MaxPooling2D(2, 2),
    tf.keras.layers.Conv2D(16, 5, activation='relu'),
    tf.keras.layers.MaxPooling2D(2, 2),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(120, activation='relu'),
    tf.keras.layers.Dense(84, activation='relu'),
    tf.keras.layers.Dense(num_classes, activation='softmax'),
])
# WeightNorm ConvNet
wn_model = tf.keras.Sequential([
    tfa.layers.WeightNormalization(tf.keras.layers.Conv2D(6, 5, activation='relu')),
    tf.keras.layers.MaxPooling2D(2, 2),
    tfa.layers.WeightNormalization(tf.keras.layers.Conv2D(16, 5, activation='relu')),
    tf.keras.layers.MaxPooling2D(2, 2),
    tf.keras.layers.Flatten(),
    tfa.layers.WeightNormalization(tf.keras.layers.Dense(120, activation='relu')),
    tfa.layers.WeightNormalization(tf.keras.layers.Dense(84, activation='relu')),
    tfa.layers.WeightNormalization(tf.keras.layers.Dense(num_classes, activation='softmax')),
])

Tải dữ liệu

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()

# Convert class vectors to binary class matrices.
y_train = tf.keras.utils.to_categorical(y_train, num_classes)
y_test = tf.keras.utils.to_categorical(y_test, num_classes)

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
170500096/170498071 [==============================] - 11s 0us/step

Mô hình tàu hỏa

reg_model.compile(optimizer='adam', 
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])

reg_history = reg_model.fit(x_train, y_train,
                            batch_size=batch_size,
                            epochs=epochs,
                            validation_data=(x_test, y_test),
                            shuffle=True)
Epoch 1/10
1563/1563 [==============================] - 9s 4ms/step - loss: 1.8336 - accuracy: 0.3253 - val_loss: 1.4039 - val_accuracy: 0.4957
Epoch 2/10
1563/1563 [==============================] - 5s 3ms/step - loss: 1.3773 - accuracy: 0.5039 - val_loss: 1.3419 - val_accuracy: 0.5309
Epoch 3/10
1563/1563 [==============================] - 5s 3ms/step - loss: 1.2510 - accuracy: 0.5497 - val_loss: 1.2108 - val_accuracy: 0.5710
Epoch 4/10
1563/1563 [==============================] - 5s 3ms/step - loss: 1.1606 - accuracy: 0.5858 - val_loss: 1.2134 - val_accuracy: 0.5687
Epoch 5/10
1563/1563 [==============================] - 5s 3ms/step - loss: 1.0971 - accuracy: 0.6100 - val_loss: 1.1534 - val_accuracy: 0.5880
Epoch 6/10
1563/1563 [==============================] - 5s 3ms/step - loss: 1.0420 - accuracy: 0.6296 - val_loss: 1.1944 - val_accuracy: 0.5865
Epoch 7/10
1563/1563 [==============================] - 5s 3ms/step - loss: 1.0014 - accuracy: 0.6445 - val_loss: 1.1386 - val_accuracy: 0.6012
Epoch 8/10
1563/1563 [==============================] - 5s 3ms/step - loss: 0.9550 - accuracy: 0.6623 - val_loss: 1.1659 - val_accuracy: 0.6020
Epoch 9/10
1563/1563 [==============================] - 5s 3ms/step - loss: 0.9196 - accuracy: 0.6737 - val_loss: 1.1539 - val_accuracy: 0.6027
Epoch 10/10
1563/1563 [==============================] - 5s 3ms/step - loss: 0.8768 - accuracy: 0.6889 - val_loss: 1.1509 - val_accuracy: 0.6029
wn_model.compile(optimizer='adam', 
                 loss='categorical_crossentropy',
                 metrics=['accuracy'])

wn_history = wn_model.fit(x_train, y_train,
                          batch_size=batch_size,
                          epochs=epochs,
                          validation_data=(x_test, y_test),
                          shuffle=True)
Epoch 1/10
1563/1563 [==============================] - 14s 8ms/step - loss: 1.8195 - accuracy: 0.3319 - val_loss: 1.4563 - val_accuracy: 0.4721
Epoch 2/10
1563/1563 [==============================] - 10s 7ms/step - loss: 1.4049 - accuracy: 0.4937 - val_loss: 1.3051 - val_accuracy: 0.5301
Epoch 3/10
1563/1563 [==============================] - 10s 6ms/step - loss: 1.2669 - accuracy: 0.5461 - val_loss: 1.2858 - val_accuracy: 0.5425
Epoch 4/10
1563/1563 [==============================] - 10s 6ms/step - loss: 1.1622 - accuracy: 0.5868 - val_loss: 1.2278 - val_accuracy: 0.5587
Epoch 5/10
1563/1563 [==============================] - 10s 6ms/step - loss: 1.0782 - accuracy: 0.6175 - val_loss: 1.1755 - val_accuracy: 0.5825
Epoch 6/10
1563/1563 [==============================] - 10s 6ms/step - loss: 1.0280 - accuracy: 0.6383 - val_loss: 1.1772 - val_accuracy: 0.5827
Epoch 7/10
1563/1563 [==============================] - 10s 6ms/step - loss: 0.9705 - accuracy: 0.6527 - val_loss: 1.1542 - val_accuracy: 0.5895
Epoch 8/10
1563/1563 [==============================] - 10s 6ms/step - loss: 0.9291 - accuracy: 0.6695 - val_loss: 1.1680 - val_accuracy: 0.5924
Epoch 9/10
1563/1563 [==============================] - 10s 6ms/step - loss: 0.8837 - accuracy: 0.6884 - val_loss: 1.1302 - val_accuracy: 0.6039
Epoch 10/10
1563/1563 [==============================] - 10s 6ms/step - loss: 0.8437 - accuracy: 0.7029 - val_loss: 1.1593 - val_accuracy: 0.6018
reg_accuracy = reg_history.history['accuracy']
wn_accuracy = wn_history.history['accuracy']

plt.plot(np.linspace(0, epochs,  epochs), reg_accuracy,
             color='red', label='Regular ConvNet')

plt.plot(np.linspace(0, epochs, epochs), wn_accuracy,
         color='blue', label='WeightNorm ConvNet')

plt.title('WeightNorm Accuracy Comparison')
plt.legend()
plt.grid(True)
plt.show()

png