Lapisan Addons TensorFlow: WeightNormalization

Lihat di TensorFlow.org Jalankan di Google Colab Lihat sumber di GitHub Unduh buku catatan

Gambaran

Notebook ini akan menunjukkan cara menggunakan lapisan Normalisasi Berat dan bagaimana hal itu dapat meningkatkan konvergensi.

BeratNormalisasi

Reparameterisasi Sederhana untuk Mempercepat Pelatihan Jaringan Saraf Dalam:

Tim Salimans, Diederik P. Kingma (2016)

Dengan memparameterisasi ulang bobot dengan cara ini Anda meningkatkan pengkondisian masalah optimasi dan mempercepat konvergensi penurunan gradien stokastik. Parameterisasi ulang kami terinspirasi oleh normalisasi batch tetapi tidak memperkenalkan ketergantungan apa pun di antara contoh-contoh dalam minibatch. Ini berarti bahwa metode kami juga dapat berhasil diterapkan pada model berulang seperti LSTM dan aplikasi yang sensitif terhadap kebisingan seperti pembelajaran penguatan dalam atau model generatif, yang normalisasi batchnya kurang cocok. Meskipun metode kami jauh lebih sederhana, metode ini masih memberikan banyak percepatan normalisasi batch penuh. Selain itu, overhead komputasi metode kami lebih rendah, memungkinkan lebih banyak langkah pengoptimalan dilakukan dalam jumlah waktu yang sama.

https://arxiv.org/abs/1602.07868



Mempersiapkan

pip install -q -U tensorflow-addons
import tensorflow as tf
import tensorflow_addons as tfa
import numpy as np
from matplotlib import pyplot as plt
# Hyper Parameters
batch_size = 32
epochs = 10
num_classes=10

Bangun Model

# Standard ConvNet
reg_model = tf.keras.Sequential([
    tf.keras.layers.Conv2D(6, 5, activation='relu'),
    tf.keras.layers.MaxPooling2D(2, 2),
    tf.keras.layers.Conv2D(16, 5, activation='relu'),
    tf.keras.layers.MaxPooling2D(2, 2),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(120, activation='relu'),
    tf.keras.layers.Dense(84, activation='relu'),
    tf.keras.layers.Dense(num_classes, activation='softmax'),
])
# WeightNorm ConvNet
wn_model = tf.keras.Sequential([
    tfa.layers.WeightNormalization(tf.keras.layers.Conv2D(6, 5, activation='relu')),
    tf.keras.layers.MaxPooling2D(2, 2),
    tfa.layers.WeightNormalization(tf.keras.layers.Conv2D(16, 5, activation='relu')),
    tf.keras.layers.MaxPooling2D(2, 2),
    tf.keras.layers.Flatten(),
    tfa.layers.WeightNormalization(tf.keras.layers.Dense(120, activation='relu')),
    tfa.layers.WeightNormalization(tf.keras.layers.Dense(84, activation='relu')),
    tfa.layers.WeightNormalization(tf.keras.layers.Dense(num_classes, activation='softmax')),
])

Muat Data

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()

# Convert class vectors to binary class matrices.
y_train = tf.keras.utils.to_categorical(y_train, num_classes)
y_test = tf.keras.utils.to_categorical(y_test, num_classes)

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
170500096/170498071 [==============================] - 11s 0us/step

Model Kereta

reg_model.compile(optimizer='adam', 
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])

reg_history = reg_model.fit(x_train, y_train,
                            batch_size=batch_size,
                            epochs=epochs,
                            validation_data=(x_test, y_test),
                            shuffle=True)
Epoch 1/10
1563/1563 [==============================] - 9s 4ms/step - loss: 1.8336 - accuracy: 0.3253 - val_loss: 1.4039 - val_accuracy: 0.4957
Epoch 2/10
1563/1563 [==============================] - 5s 3ms/step - loss: 1.3773 - accuracy: 0.5039 - val_loss: 1.3419 - val_accuracy: 0.5309
Epoch 3/10
1563/1563 [==============================] - 5s 3ms/step - loss: 1.2510 - accuracy: 0.5497 - val_loss: 1.2108 - val_accuracy: 0.5710
Epoch 4/10
1563/1563 [==============================] - 5s 3ms/step - loss: 1.1606 - accuracy: 0.5858 - val_loss: 1.2134 - val_accuracy: 0.5687
Epoch 5/10
1563/1563 [==============================] - 5s 3ms/step - loss: 1.0971 - accuracy: 0.6100 - val_loss: 1.1534 - val_accuracy: 0.5880
Epoch 6/10
1563/1563 [==============================] - 5s 3ms/step - loss: 1.0420 - accuracy: 0.6296 - val_loss: 1.1944 - val_accuracy: 0.5865
Epoch 7/10
1563/1563 [==============================] - 5s 3ms/step - loss: 1.0014 - accuracy: 0.6445 - val_loss: 1.1386 - val_accuracy: 0.6012
Epoch 8/10
1563/1563 [==============================] - 5s 3ms/step - loss: 0.9550 - accuracy: 0.6623 - val_loss: 1.1659 - val_accuracy: 0.6020
Epoch 9/10
1563/1563 [==============================] - 5s 3ms/step - loss: 0.9196 - accuracy: 0.6737 - val_loss: 1.1539 - val_accuracy: 0.6027
Epoch 10/10
1563/1563 [==============================] - 5s 3ms/step - loss: 0.8768 - accuracy: 0.6889 - val_loss: 1.1509 - val_accuracy: 0.6029
wn_model.compile(optimizer='adam', 
                 loss='categorical_crossentropy',
                 metrics=['accuracy'])

wn_history = wn_model.fit(x_train, y_train,
                          batch_size=batch_size,
                          epochs=epochs,
                          validation_data=(x_test, y_test),
                          shuffle=True)
Epoch 1/10
1563/1563 [==============================] - 14s 8ms/step - loss: 1.8195 - accuracy: 0.3319 - val_loss: 1.4563 - val_accuracy: 0.4721
Epoch 2/10
1563/1563 [==============================] - 10s 7ms/step - loss: 1.4049 - accuracy: 0.4937 - val_loss: 1.3051 - val_accuracy: 0.5301
Epoch 3/10
1563/1563 [==============================] - 10s 6ms/step - loss: 1.2669 - accuracy: 0.5461 - val_loss: 1.2858 - val_accuracy: 0.5425
Epoch 4/10
1563/1563 [==============================] - 10s 6ms/step - loss: 1.1622 - accuracy: 0.5868 - val_loss: 1.2278 - val_accuracy: 0.5587
Epoch 5/10
1563/1563 [==============================] - 10s 6ms/step - loss: 1.0782 - accuracy: 0.6175 - val_loss: 1.1755 - val_accuracy: 0.5825
Epoch 6/10
1563/1563 [==============================] - 10s 6ms/step - loss: 1.0280 - accuracy: 0.6383 - val_loss: 1.1772 - val_accuracy: 0.5827
Epoch 7/10
1563/1563 [==============================] - 10s 6ms/step - loss: 0.9705 - accuracy: 0.6527 - val_loss: 1.1542 - val_accuracy: 0.5895
Epoch 8/10
1563/1563 [==============================] - 10s 6ms/step - loss: 0.9291 - accuracy: 0.6695 - val_loss: 1.1680 - val_accuracy: 0.5924
Epoch 9/10
1563/1563 [==============================] - 10s 6ms/step - loss: 0.8837 - accuracy: 0.6884 - val_loss: 1.1302 - val_accuracy: 0.6039
Epoch 10/10
1563/1563 [==============================] - 10s 6ms/step - loss: 0.8437 - accuracy: 0.7029 - val_loss: 1.1593 - val_accuracy: 0.6018
reg_accuracy = reg_history.history['accuracy']
wn_accuracy = wn_history.history['accuracy']

plt.plot(np.linspace(0, epochs,  epochs), reg_accuracy,
             color='red', label='Regular ConvNet')

plt.plot(np.linspace(0, epochs, epochs), wn_accuracy,
         color='blue', label='WeightNorm ConvNet')

plt.title('WeightNorm Accuracy Comparison')
plt.legend()
plt.grid(True)
plt.show()

png