Promedio del modelo

Ver en TensorFlow.org Ejecutar en Google Colab Ver fuente en GitHub Descargar cuaderno

Visión general

Este cuaderno demuestra cómo usar el Optimizador de promedios móviles junto con el Punto de control promedio del modelo del paquete de complementos de tensorflow.

Promedio móvil

La ventaja de Moving Averaging es que son menos propensos a cambios de pérdida desenfrenados o representación de datos irregular en el último lote. Da una idea suavizada y más general del entrenamiento del modelo hasta cierto punto.

Promedio estocástico

El promedio de peso estocástico converge hacia óptimos más amplios. Al hacerlo, se asemeja a un conjunto geométrico. SWA es un método simple para mejorar el rendimiento del modelo cuando se usa como envoltorio alrededor de otros optimizadores y promediando los resultados de diferentes puntos de trayectoria del optimizador interno.

Punto de control promedio del modelo

callbacks.ModelCheckpoint no le da la opción de guardar los pesos medios en movimiento en el medio de la formación, que es la razón por modelo de media optimizadores requiere una devolución de llamada personalizado. Utilizando el update_weights parámetro, ModelAverageCheckpoint le permite:

  1. Asigne los pesos medios móviles al modelo y guárdelos.
  2. Mantenga las ponderaciones antiguas no promediadas, pero el modelo guardado usa las ponderaciones promedio.

Configuración

pip install -U tensorflow-addons
import tensorflow as tf
import tensorflow_addons as tfa
import numpy as np
import os

Modelo de construcción

def create_model(opt):
    model = tf.keras.models.Sequential([
        tf.keras.layers.Flatten(),                         
        tf.keras.layers.Dense(64, activation='relu'),
        tf.keras.layers.Dense(64, activation='relu'),
        tf.keras.layers.Dense(10, activation='softmax')
    ])

    model.compile(optimizer=opt,
                    loss='sparse_categorical_crossentropy',
                    metrics=['accuracy'])

    return model

Preparar conjunto de datos

#Load Fashion MNIST dataset
train, test = tf.keras.datasets.fashion_mnist.load_data()

images, labels = train
images = images/255.0
labels = labels.astype(np.int32)

fmnist_train_ds = tf.data.Dataset.from_tensor_slices((images, labels))
fmnist_train_ds = fmnist_train_ds.shuffle(5000).batch(32)

test_images, test_labels = test
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz
32768/29515 [=================================] - 0s 0us/step
40960/29515 [=========================================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3-ubyte.gz
26427392/26421880 [==============================] - 0s 0us/step
26435584/26421880 [==============================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-labels-idx1-ubyte.gz
16384/5148 [===============================================================================================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-images-idx3-ubyte.gz
4423680/4422102 [==============================] - 0s 0us/step
4431872/4422102 [==============================] - 0s 0us/step

Compararemos tres optimizadores aquí:

  • SGD sin envolver
  • SGD con media móvil
  • SGD con promedio de peso estocástico

Y mira cómo funcionan con el mismo modelo.

#Optimizers 
sgd = tf.keras.optimizers.SGD(0.01)
moving_avg_sgd = tfa.optimizers.MovingAverage(sgd)
stocastic_avg_sgd = tfa.optimizers.SWA(sgd)

Ambos MovingAverage y StocasticAverage optimers utilizan ModelAverageCheckpoint .

#Callback 
checkpoint_path = "./training/cp-{epoch:04d}.ckpt"
checkpoint_dir = os.path.dirname(checkpoint_path)

cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_dir,
                                                 save_weights_only=True,
                                                 verbose=1)
avg_callback = tfa.callbacks.AverageModelCheckpoint(filepath=checkpoint_dir, 
                                                    update_weights=True)

Modelo de tren

Optimizador de vainilla SGD

#Build Model
model = create_model(sgd)

#Train the network
model.fit(fmnist_train_ds, epochs=5, callbacks=[cp_callback])
Epoch 1/5
1875/1875 [==============================] - 4s 2ms/step - loss: 0.8031 - accuracy: 0.7282

Epoch 00001: saving model to ./training
Epoch 2/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.5049 - accuracy: 0.8240

Epoch 00002: saving model to ./training
Epoch 3/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.4591 - accuracy: 0.8375

Epoch 00003: saving model to ./training
Epoch 4/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.4328 - accuracy: 0.8492

Epoch 00004: saving model to ./training
Epoch 5/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.4128 - accuracy: 0.8561

Epoch 00005: saving model to ./training
<keras.callbacks.History at 0x7fc9d0262250>
#Evalute results
model.load_weights(checkpoint_dir)
loss, accuracy = model.evaluate(test_images, test_labels, batch_size=32, verbose=2)
print("Loss :", loss)
print("Accuracy :", accuracy)
313/313 - 0s - loss: 95.4645 - accuracy: 0.7796
Loss : 95.46446990966797
Accuracy : 0.7796000242233276

Promedio móvil SGD

#Build Model
model = create_model(moving_avg_sgd)

#Train the network
model.fit(fmnist_train_ds, epochs=5, callbacks=[avg_callback])
Epoch 1/5
1875/1875 [==============================] - 4s 2ms/step - loss: 0.8064 - accuracy: 0.7303
2021-09-02 00:35:29.787996: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
INFO:tensorflow:Assets written to: ./training/assets
Epoch 2/5
1875/1875 [==============================] - 4s 2ms/step - loss: 0.5114 - accuracy: 0.8223
INFO:tensorflow:Assets written to: ./training/assets
Epoch 3/5
1875/1875 [==============================] - 4s 2ms/step - loss: 0.4620 - accuracy: 0.8382
INFO:tensorflow:Assets written to: ./training/assets
Epoch 4/5
1875/1875 [==============================] - 4s 2ms/step - loss: 0.4345 - accuracy: 0.8470
INFO:tensorflow:Assets written to: ./training/assets
Epoch 5/5
1875/1875 [==============================] - 4s 2ms/step - loss: 0.4146 - accuracy: 0.8547
INFO:tensorflow:Assets written to: ./training/assets
<keras.callbacks.History at 0x7fc8e16f30d0>
#Evalute results
model.load_weights(checkpoint_dir)
loss, accuracy = model.evaluate(test_images, test_labels, batch_size=32, verbose=2)
print("Loss :", loss)
print("Accuracy :", accuracy)
313/313 - 0s - loss: 95.4645 - accuracy: 0.7796
Loss : 95.46446990966797
Accuracy : 0.7796000242233276

Peso estocástico promedio SGD

#Build Model
model = create_model(stocastic_avg_sgd)

#Train the network
model.fit(fmnist_train_ds, epochs=5, callbacks=[avg_callback])
Epoch 1/5
1875/1875 [==============================] - 5s 2ms/step - loss: 0.7896 - accuracy: 0.7350
INFO:tensorflow:Assets written to: ./training/assets
Epoch 2/5
1875/1875 [==============================] - 5s 2ms/step - loss: 0.5670 - accuracy: 0.8065
INFO:tensorflow:Assets written to: ./training/assets
Epoch 3/5
1875/1875 [==============================] - 5s 2ms/step - loss: 0.5345 - accuracy: 0.8142
INFO:tensorflow:Assets written to: ./training/assets
Epoch 4/5
1875/1875 [==============================] - 5s 2ms/step - loss: 0.5194 - accuracy: 0.8188
INFO:tensorflow:Assets written to: ./training/assets
Epoch 5/5
1875/1875 [==============================] - 5s 2ms/step - loss: 0.5089 - accuracy: 0.8235
INFO:tensorflow:Assets written to: ./training/assets
<keras.callbacks.History at 0x7fc8e0538790>
#Evalute results
model.load_weights(checkpoint_dir)
loss, accuracy = model.evaluate(test_images, test_labels, batch_size=32, verbose=2)
print("Loss :", loss)
print("Accuracy :", accuracy)
313/313 - 0s - loss: 95.4645 - accuracy: 0.7796
Loss : 95.46446990966797
Accuracy : 0.7796000242233276